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Signed networks appear naturally in contexts where conflict or animosity is apparent.

In this

book chapter we review some of the literature on signed networks, especially in the context of
partitioning. Most of the work is founded in what is known as structural balance theory. We
cover the basic mathematical principles of structural balance theory. The theory yields a natural
formulation for partitioning. We briefly compare this to other partitioning approaches based on
community detection. Finally, we analyse an international network of alliances and conflicts and
discuss the implications of our findings for structural balance theory.

We are concerned with signed networks, where each link
is associated with either a positive (+) or negative sign
(—). More generally, weights w;; could be used. Al-
though weights are often assumed to be positive, we ex-
plicitly allow them also to be negative. For simplicity,
we deal primarily with non-weighted networks, but most
concepts used here can be adapted easily to the weighted
case.

I. NOTATION

While we try to be as consistent as possible with the
general notation used throughout this book, we require
some additional notation because signed networks have
signs for arcs and edges. We denote a directed signed
network by G = (V, A7, AT) where A~ C V x V are the
negative links and AT C V x V the positive links. We
assume that A~ NA' = (), so that no link is both positive
and negative. We exclude loops on nodes. Many studied
signed networks are directed. Some are not, including the
network we study here. Similarly, an undirected signed
network is denoted by G = (V,E~, ET) where E~ C
V x V are the negative links and Et C V x V the positive
links. As for the directed case, E~ N Et = 0.

We present our initial discussion in terms of directed
signed networks. However, if we restrict ourselves to
undirected graphs, then (i,j) € E¥ is identical to (j,i) €
E*. Also, we assume that there are no self-loops, i.e. no
(i,1) exists. For edges, the signs on them are symmetrical
by definition.

We define the adjacency matrices AT and A~. We set
A;’; = 1 whenever (i,j) € AT and A;;- = 0 otherwise.
Similarly, A;; = 1 whenever (i,j) € A~ and A;; = 0
otherwise. We denote the signed adjacency matrix A =
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At — A—. This can be summarised as follows

—1 if (i,§) € A™,
Ay =41 if (,5) € AT, (1)
0 otherwise.

Note that we exclusively work with the signed adjacency
matrix in this chapter, and A should not be confused with
the ordinary adjacency matrix. The signed adjacency
matrix for undirected networks is defined in a similar
fashion. For undirected networks the signed adjacency
matrix is symmetric, and A = AT,

The neighbors of a node are those nodes to which it
is connected. The positive neighbors are N;F = {u |
(v,u) € ET} and the negative neighbors similarly N, =
{u | (v,u) € E~}, and all the neighbors are simply the
union of both N (v) = N (v) N N~ (v). The number of
edges connected to a node is its degree. We distinguish
between the positive degree dF = |N,F|, negative degree
d; = |N, | and total degree d,, = |N,| = d;f +d, . Similar
formulations are possible for directed signed networks.

Blockmodeling, as a way of partitioning social net-
works, started with a clear substantive rationale ex-
pressed in terms of social roles [1]. However, the avail-
ability of algorithms for partitioning (unsigned) net-
works [2, 3], based on ideas of structural equivalence, led
to a rather mechanical application to simply partition
social networks with a subsequent ad hoc interpretation
of what was identified. Such algorithms are indirect in
the sense of having networks transformed to (dis)simi-
larity measures for which partitioning methods are used.
In contrast, a direct approach was proposed [4] in which
the network data are clustered directly. This allows the
inclusion of substantive ideas within the rubric of pre-
specification.

Consistent with this, the approach known as structural
balance theory has a clear substantive foundation. We
briefly review the basics of balance theory as it connects
directly to partitioning signed social networks. We then
review some methods for partitioning networks in prac-
tice, and examine how they connect to balance theory.
Finally, we briefly explore how structural balance evolves
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FIG. 1. Structural balance. There are four possible con-
figurations for having positive or negative links between three
nodes (a triad). These are demonstrated on the left, where a
solid line represents a positive link and a dashed line repre-
sents a negative link. The upper two triads are structurally
balanced because the product of their signs is positive. Sim-
ilarly, the lower two triads are not structurally balanced be-
cause the product of their signs is negative. If all triads (in
a complete network) are structurally balanced, the network
can be partitioned in two factions such that they are inter-
nally positively linked, with negative links between the two
factions, as illustrated on the right.
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through time in an empirical example of international al-
liances and conflict.

II. STRUCTURAL BALANCE THEORY

The basis of structural balance theory is founded on con-
siderations of cognitive dissonance. Heider [5] focused on
so-called p-o-x triplets, considering the relations between
an actor (p), another actor (o) and some object (x) and
claimed such triplets tend to be consistent in attitudes.
For example, in this perspective, if someone (p) has a
friend (o) who dislikes conservative philosophies (x), then
p also tends to dislike conservative philosophies. This ex-
tends naturally to p-o-q triples for three actors denoted
by p, o, and q. In the formulation involving three ac-
tors, well-known claims such as “a friend of a friend is
a friend”; “an enemy of a friend is an enemy”; “a friend
of an enemy is an enemy”; and “an enemy of an enemy
is a friend” are thought to hold. The notion of balance
from Heider [5] was further formalized, and extended to
an arbitrary number of persons or objects by Cartwright
and Harary [6]. They modeled relations between persons
as a graph where nodes are persons and the relations be-
tween them links in the graph. The four possible triads
for the undirected case are shown in Figure 1.

For the remainder of the chapter, we restrict ourselves
to undirected graphs. We first focus on complete graphs,
where all links are present (excluding self-loops). Follow-
ing [6], we provide the following definition.

Definition 1. A triad i, j, k is called balanced whenever

the product
AijAjkAki =1. (2)

A complete signed graph G is structurally balanced when-
ever all triads are balanced.

Of the four possible triads, two are balanced (+ + +
and + — —) and two are unbalanced (+ + — and — — —)
according to this definition (see also Fig. 1).

Harary [7] proved that if the graph G is structurally
balanced, then it can be partitioned in two clusters such
that there are only positive links within each cluster and
negative links between them. Cartwright and Harary [6]
called this observation the structure theorem, and Dor-
eian and Mrvar [8] called it the first structure theorem

Theorem 1 (Structure theorem, [7]). Let G =
(V,E*,E™) be a complete signed graph. If and only if G
is balanced can V be partitioned into two disjoint subsets
Vi and Vy such that a positive edge e € E either in
Vi x Vi or Vo x Vo while a negative edge e € E~ falls in
Vi x Vs,

Proof. Assume G is balanced. Consider some node v € V
and set Vi = v UNT(v) as well as the set Vo = V' \ ;.
Consider an edge (u,w) € Vo x Vo. Then (u,v) € E~
and (w,v) € E~ by definition of V4 so that (u,w) € E*
by structural balance. Hence all edges in V5 are positive.
Similarly, any edge (u,w) € Vi x V; is positive. Hence,
we can partition V into the stated disjoint sets V7 and
V5. In reverse, any triad is easily seen to be balanced if
V' is partitioned as stated in the theorem. O

While the above is limited to complete graphs, it can be
generalized to incomplete graphs. For this we first need
to introduce another definition for structural balance:

Definition 2 (Structural Balance). Let G =
(V,EY,E~) be a signed graph and A the signed
adjacency matriz. Let C = wvyvs...vpv1 be a cycle
consisting of nodes v; with viy1 = v1. Then the cycle C
is called balanced whenever

Sgn(C) = HAUiUi+1 =1 (3)

A signed graph G is called balanced if all its cycles C
are balanced.

Stated differently, sgn(C') is the sign of the cycle which
is balanced if its sign is positive. If a cycle contains m™
negative edges, then sgn(C) = (=1)™ . In other words, a
cycle is balanced if it contains an even number of negative
links. Note that for a cycle of length three, this coincides
exactly with the definition of a balanced triad.

The sign of a cycle can be decomposed in the sign of
subcycles if the cycle has a chord: an edge between two
nodes of the cycle (see Fig. 2).



Theorem 2. Let C = vyvy...vpvy be a cycle with a
chord between nodes v1 and v, in C. Then let C7 =
v1Vg ... V01 and Cy = v1vg ... v.v1 be the induced subcy-

cles. Then sgn(C) = sgn(C1) sgn(Cs).

Proof. We denote by m; the number of negative links
of €' and similarly m, for Cy and m~ for C. Suppose
that the link (vq,v,) is not a negative link. Then the
number of negative links in C'is m~ = m] +my, so that
sgn(C) = (—1)™ = (=1)™ (-=1)™2 = sgn(C1)sgn(Cy).
Suppose that (vi,v.) is a negative link. Then m~ =
(my — 1) + (my — 1) so that sgn(C) = (-1)™ =
(=1)™ (=1)™2 (=1)? = sgn(C1) sgn(Ca). O

In other words, it is not necessary to determine the
structural balance of all cycles, and we can restrict our-
selves to the balance of chordless cycles. In fact, this
statement can be made stronger, and holds for any com-
bination of cycles. With a combination of cycles, we
mean the symmetric difference of the edges of the two
cycles. To define this properly it is more convenient to
denote a cycle by the set of its edges (in no particular
order). That is, we define a cycle C' = {ej,ea,... e}
where the edges form a cycle, i.e. the subgraph of C'is a
cycle.

Definition 3. Let C; = {ej,e2,...,ex} and Cy =
{f1, f2,-- -, fr} be two cycles. Then we define the sym-
metric difference as

CiACy = (Cl U CQ) \ (Cl n Cg) (4)
We also refer to this as the combination of two cycles.

Note that the combination of two cycles may actually
be a set of multiple edge-disjoint cycles.

Now we can prove the stronger statement on the com-
bination of cycles.

Theorem 3. Let C; = {ey,eq,.

{f1, fa,-- -, fu} be two cycles.
sgn(C) = sgn(C1) sgn(Cy).

et and Cy =
[f C = 01A02 then

Proof. Let us denote the number of negative links in a set
C by m~(C)=|CNE~|. Let S = CyUC5 be the union
of the two cycles, and T = C; N Cs be the overlap of the
two cycles. Then m~(S)+m = (T) = m™(Cy) +m~(Ca),
and m~(C) =m=(S) —m (T) =m (C1) + m™ (Cs) —
2m~(T). Hence

since (—1)2™ = 1 for any integer m. O
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FIG. 2. Chords and cycles. This illustrates a cycle vy . .. vg
with a chord between nodes v; and v,. There are two subcy-
cles: one following the left path and the other following the
right path in the illustration. These two subcycles have a sin-
gle common edge: viv,. The sign of the large cycle is then
the product of the sign of the two subcycles.

In other words, if we know the balance of some lim-
ited number of cycles, we can determine the balance of
all cycles. These ‘limited number of cycles’ are called
the fundamental cycles. Any cycle can be obtained as a
combination of two (or more) fundamental cycles. This
implies that if all fundamental cycles are balanced, then
the graph as a whole is balanced. We do not consider
fundamental cycles in more detail, but this notion un-
derlies the technique by Altafini [9] which we consider in
section [1T A 2.

Similar to the sign of cycles, we can define the sign of
a path.

Definition 4. Let P = vivy ... v, be a path in a signed
graph G with signed adjacency matriz A. The sign of the
path P is then defined as

k—1
sgn(P) := H Avviis- (10)

=1

Paths in signed networks are either positive or nega-
tive. A cycle can be decomposed in two paths so the sign
of a cycle is the product of the sign of the two paths.
Hence, a cycle is balanced if the two paths have the same
sign.

As before, the graph G can be partitioned in two clus-
ters with positive links within clusters and negative links
between clusters.

Theorem 4 (Structure theorem, [7]). Let G =
(V, E*,E™) be a connected signed graph and A the signed
adjacency matriz. Then G is balanced if and only if G
can be partitioned into two disjoint subsets Vi and Va
such that a positive edge e € ET either in Vi x Vi or
Vo x Vo while a negative edge e € E~ falls in Vi x V.

Proof. First, assume G is balanced. Then select any v €
V and set Vi = {u|sgn(u — v path) = 1}, that is, all
the nodes that can be reached through a positive path.
Define Vo = V' \ V4. Let e = (u,w) € E~. Suppose e €
Vi x V7. By construction of V7, then both u and w have a
positive path to v, so that the path u—w through v is also



positive. But if (u,w) is negative, it would be contained
in a negative cycle, contradicting balance. Hence e ¢
V1 x Vq. Similarly, suppose that e € V5 x V5. Then both
the u — v path and the w — v path is negative (otherwise
u and w would be in V;). The u — w path through v
is then positive since the product of the two negative
paths is positive. Again, since (u,w) € E~ it contradicts
balance. Hence, all negative edges lie between V; and V5.
Finally, let e = (u,w) € E* with v € V; and w € V5.
Then there is a positive u — v path and a negative w — v
path, so that the u —w path through v is negative, which
combined with the positive edge (u, w) leads to a negative
cycle, contradicting balance. Hence, positive edges lie
within V7 and V5. We conclude that if G is balanced,
it can be partitioned as stated. Vice-versa, suppose G
can be partitioned into the two states subsets Vi and V5.
Let C be a cycle. If C' is contained within V; or V5 it
is completely positive, so that sgn(C) = 1. Suppose C
has some node u € V; and v € V5. Then any u — v path
contains an odd number of negative links, and is hence
negative, so that the cycle C' is positive. Hence, all cycles
are balanced, and so G is balanced. O

A. Weak structural balance

Classical structural balance theory predicts that a bal-
anced network can be partitioned into two clusters. How-
ever, as suggested by Davis [10] and Cartwright and
Harary [11], we can generalize this notion of structural
balance by redefining the notion of an unbalanced triad
or cycle. Consider for example the (unbalanced) triad
with three negative links. The three nodes can be par-
titioned into three clusters: trivially, all links between
clusters are negative and all positive links are within clus-
ters. There is a simple characterization of networks that
can be partitioned in such a way: no cycle can contain
exactly one negative link. Davis [10] established this
only for complete graphs, and Cartwright and Harary
[11] extended this to sparse graphs. We call signed net-
works with this property weakly structurally balanced (or
weakly balanced).

Definition 5. A cycle C' = vyvy ... vpvy is termed weakly
balanced if it does mot contain exactly a single negative
link. A signed graph G is called weakly balanced if all its
cycles C' are weakly balanced.

Following this, we can call the previous definition
strong structural balance. Any graph that is strongly
structurally balanced is also weakly structurally bal-
anced: a cycle with positive sign must contain an even
number of negative links. It cannot have exactly one.
The reverse does not hold: a weakly structurally bal-
anced cycle can have three negative links which is not
allowed in strong structural balance.

Lemma 1. Let C = vivy ... v,v1 be a cycle with a chord
between nodes v1 and v, in C. Then let C7 = v1vs ... 0,01

and Cy = 10k . .. v.v1 be the induced subcycles. Then C
is weakly balanced if C7 and Cy are weakly balanced.

Proof. We denote by m] # 1 the number of negative
links of C'; and, similarly, ms # 1 for C, and m~ for C.
Suppose that the link (vy,v,) is not a negative link, then
the number of negative links in C'is m™ =m; +m, # 1
implying C' is weakly balanced. Suppose that (vq,v,) is
a negative link. Then both m; > 2 and m; > 2, and
m~ = (my —1)4 (mg — 1) > 2 so that C is weakly
balanced. O

The inverse does not hold. This can readily be seen by
considering an all-positive cycle with a single negative
chord. The all-positive cycle, clearly, is weakly balanced,
but the induced sub-cycles contain exactly one single neg-
ative link, and are therefore not weakly balanced. The
theorem on chordless cycles for weak balance is hence
a weaker statement than the corresponding theorem for
strong structural balance. Nonetheless, we can still limit
ourselves to considering chordless cycles for determining
whether a graph is weakly structurally balanced.

Theorem 5. Let G be a signed network. Then G is
weakly structurally balanced if and only if all chordless
cycles are weakly structurally balanced.

Proof. If G is weakly balanced, all cycles are balanced,
so that trivially all chordless cycles are balanced. Vice
versa, assume all chordless cycles are weakly balanced.
We use induction on |C|. All chordless cycles C' are bal-
anced by assumption, providing our inductive base for
|C| = 3 (because triads are chordless by definition). As-
sume all cycles with |C| < r are balanced, then consider
cycle C' of length r. If C' contains a chord, we can sep-
arate C in cycles C and Cs, which are balanced by our
inductive assumption. Then, by Lemma 1 cycle C' is bal-
anced. Hence, all cycles are weakly balanced. O

To determine whether a graph is weakly structurally
balanced, we need only to consider the chordless cycles
rather than all cycles. Computationally, this is impor-
tant.

Similar to strong structural balance, we can partition
a weakly structurally balanced graph, but now in pos-
sibly more than two clusters. This is called the second
structure theorem by Doreian and Mrvar [8].

Theorem 6 (Clusterability theorem, [11]). Let G =
(V,EY,E™) be a connected signed graph. Then G is
weakly structurally balanced if and only if G can be par-
titioned into disjoint subsets V1, Va, ..., V,. such that a
positive edge e € ET falls in V, x V. while a negative
edge e € E~ falls in V. x Vg for ¢ # d.

Proof. Suppose G is weakly balanced. Let G = (V, E™)
be the positive part of the signed graph, and let the clus-
ters be defined by the connected components of G*. Any
positive edge then clearly cannot fall between clusters,



because different connected components cannot be con-
nected through a positive link. Consider then some neg-
ative link (u,v) € E~. Suppose that u and v are both in
some V.. Then there exists a positive u — v path because
they are in the same component, thus yielding a cycle
with exactly a single negative link, contradicting weak
balance. Hence, any negative link falls between clusters.
Vice versa, suppose G is split into clusters as stated in
the theorem. Any cycle completely contained within a
cluster has only positive links. Consider a cycle through
u and v where u € V, and v € Vy, d # ¢. Then any path
between u and v must contain at least a single negative
link, so that any cycle must contain at least two negative
links. O

It is easy to see when a complete signed graph is weakly
structurally balanced: it must not contain the + + —
triad.

In summary, signed networks which are strongly struc-
turally balanced can be partitioned in two clusters.
Signed networks which are weakly structurally balanced
can be partitioned in multiple clusters. Clearly, all signed
networks which are strongly structurally balanced are
also weakly structurally balanced, but not vice versa.
One obvious question is whether strong or weak struc-
tural balance is more realistic. This led to partitioning
signed networks, which we will examine in the next sec-
tion.

III. PARTITIONING

The previous section introduced the general idea and
structure theorems for structural balance. However,
these conditions are rather strict: no cycle can exist with
an odd number of negative links (strong balance), or a
single negative link (weak balance). Empirically, this is
rather unrealistic to achieve exactly, but we might come
close. This was suggested by Cartwright and Harary [6],
when introducing the notion of structural balance, who
suggested counting the number of cycles that are bal-
anced and measuring the proportion of balanced cycles,
termed the degree of balance:

" (G)
) (11)

b(G) =

where ¢t (G) is the number of balanced cycles and ¢(G)
is the total number of cycles. This measure is used in-
frequently, because it is computationally intensive to list
all cycles [12]. The number of cycles in a graph increases
exponentially with its size. Depending on the so-called
cyclomatic number, y = m — n + 1, there are between u
and 2 cycles [13], which Harary [14] also uses to define
bounds on the degree of balance. However, this number
provides little insight into the structure of the network.

A more useful measure was suggested by Harary [14]:
the smallest number of ties to be deleted in order to make
the network (weakly) balanced. This is the same as the

number of ties whose reversal of signs leads to a bal-
anced network. This is known as the line index of imbal-
ance. Computing the line index of imbalance is compu-
tationally intensive as it is an NP-hard problem. Initially
the definition was restricted to strong structural balance.
Doreian and Mrvar [8] were the first to introduce this in
the context of clustering for weak structural balance.

A. Strong structural balance

Given a partition into two subsets, V; and V5, we can
measure the number of edges that are in conflict with
structural balance. The number of negative edges within
Vi are

=5 Y 4 (12

1i€Vy,jeEVL

and similarly so for V5, while the positive edges between
Vi and V5 are

CtVi,Va)= Y Af (13)

ieVy,jEVS

so that the total number of edges inconsistent with struc-
tural balance for a partition into V; and V5 is

C(Vi, Vo) = C~ (V1) + C~ (V2) + CT(V1, V2).  (14)

This is the line index of imbalance mentioned earlier. A
graph G is then structurally balanced if and only if the
minimum line index of imbalance is zero.

1. Spectral theory

Given a partition into V7 and V5, let x; = 1if i € Vi
and z; = —1 if ¢ € V5. Then for an edge (i, ), if z; = x;
then x;A;;x; = A;j, while for z; # x; we have x;A;;2; =
—A;;. Hence

' Az = Z (Af, — AD) + Z (45 — A) (15)

Ti=T; T #T;
=2m— Y (AL +A;) - D (A +A5)
Ti=T; TiFT
+ ) (AL -Ap+ > (A - AL (16)
T;=xT; T AT
=2m—2 Y A; -2 Af (17)
Ti=Tj T FET;

So that 2" Az = 2(m — C(V1, V2)) gives (twice) the num-
ber of edges that are consistent with balance, the inverse
of the line index of imbalance. Note that this also im-
plies that if x; is the partition corresponding to structural
balance, than x; A;jz; > 0 for all 7, j.



Theorem 7. Let G be a connected signed graph and let
u be the dominant eigenvector of the signed adjacency
matrix A. Then G is balanced if and only if Vi = {i €
V]u; > 0} and Vo = V \ Vi defines the split into two
clusters as in Theorem /.

Proof. If the split defines a correct partition, then obvi-
ously G is balanced (Theorem 4). In reverse, suppose G is
balanced. Let uw be the dominant eigenvector. Suppose
that u;A;;u; < 0 for some ¢,5. Then let z be another
vector with |z;| = |u,| for all ¢ and z;A;;2; > 0 for all
1,7, which is possible by structural balance of G. Then
]l = Jlull and

’U,TA’U, = Z uiAijuj (18)
< uiAijuy)| (19)
ij

= [wiAij] (20)
i

= ZwiAijmj = .’ETA(E, (21)
ij
which contradicts the fact that w is the dominant eigen-

vector. Hence, u;A;u; > 0 for all 4,7 and it defines a
correct partition. O

The vector space constrained to |x;| = 1 is rather diffi-
cult to optimize. Taking general vectors with ||z| =
1, the dominant eigenvector x maximizes this and the
largest eigenvalue of the adjacency matrix A, (A) gives a
lower bound of the line index of imbalance.

Kunegis et al. [15] suggest using the signed Lapla-
cian [16] for measuring structural balance. It is defined
as

L=D-A (22)

where A is the signed adjacency matrix as defined earlier
and D = diag(ds,...,d,) the diagonal matrix of total
degrees. The rows of £ sum to twice the negative degrees
2(dy,....d; ) because } ., A;; = di —d;, so that (df +
d;) — (df —d;) = 2d; . Furthermore, the Laplacian is
positive-semidefinite, i.e. 2" Lz > 0 for all 2. We can
show this as follows. Writing out, we obtain

7 7

' Lz

i
=Y wibiydiy — Y wiAya;. (24)
ij ij

Since d; = Zij |A;j|, we can write Zij z;0;diz; =
Zij |Azj|$12 and obtain

i i

Clearly 3, |Aij|2? = > |Aij]x3 so that we get

ij ij ij

which can be nicely expressed as a square (because Afj =
|Ayj| and |Am‘2 |Aij])

*Z‘A2J|

Now suppose G is strongly balanced so that we can
partition the nodes into V; and V5 without violating bal-
ance. Let z; = 1ifi € Vj and x; = —1 if ¢ € V5. Then
for any edge (4,j), if ©; = x; then by strong balance
A;; = 1, while if z; = —z; we have A;; = —1. Hence
|Aij|(x; — Ajjz;)? = 0 and the smallest eigenvalue of the
Laplacian is 0. Vice versa, if the Laplacian is 0, G is
balanced: the term |A;;|(z; — A;;x;)? = 0 can only be 0
for all 75 if A is balanced.

More generally, given a partition into V7 and Vs, let
x;=1ifi € V; and x; = —1 if ¢ € V5. Then for an edge
(i,j), if T, = Xy then |Aw\(zz — Aijllij)Z = 414;7 while if
AijIj)Q = 4A;§ Hence,

— Aijzi)* > 0. (27)

Ty = —Tj then ‘AUKJLL —

' Lo =~ Z |A;j|(z

— Ajij IJ) (28)

1 DRI v (29)

Ti=T; Ti AT

=2C(V1,V2) (30)

and the vector x gives (twice) the line index of imbalance.

The vector space constrained to |x;| = 1 is rather diffi-
cult to optimize. Taking general vectors with ||z| = 1,
the minimal eigenvector 2 = u minimizes ' Lz. Conse-
quentially, the smallest eigenvalue of the Laplacian A1 (L)
gives a lower bound of the line index of imbalance, as
2" Lo > u' Lu where u is the smallest eigenvector. The
partition induced by u however, taking = sgn(u), i.e.
x; = sgn(u;), gives an upper bound, as the minimum
index of imbalance is at most the index of an actual par-
tition. Hence, we obtain

Ai(L) <20(V, Vo) < Mi(L) (31)

where A (£) = sgn(u)" £sgn(u).
We thus obtain the identity that 2" Az = 2m — 2" La
and that maximizing 2" Az is equivalent to minimizing
x' Lz. However, the eigenvectors of the adjacency matrix
and the Laplacian are, in general, not identical. In the
case of balanced graphs though, the largest eigenvector
of the adjacency matrix and the smallest eigenvector of
the Laplacian provide identical information; the partition
into V7 and V5.
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FIG. 3. Switching This illustrates how switching works. In
the graph on the left, there are three edges crossing the par-
tition into Vi and Va; two negative (the dashed lines) and
one positive (the solid line). When we switch according to
the partition V4 and V5, it implies that we switch the signs of
the edges crossing the partition, but leave all the other signs
unchanged. This is illustrated in the graph on the right. All
cycles keep the same sign after the switching. In this case this
reduces the number of negative links, and simplifies finding
the balanced partition. The balanced partition is indicated by
black and white nodes in both cases. In the right, the black
and white are reversed for Va, corresponding to the switch-
ing of the balanced partition by Vi and V2 as explained in
Theorem 9.

2. Switching

One interesting observation in signed graph theory is
that we can change the sign of some links without affect-
ing balance. More precisely, we can switch the signs of
edges across a cut without changing structural balance.
Switching signs was introduced originally by Abelson and
Rosenberg [17] who used it to calculate the line index of
imbalance (although they called it the “complexity” of a
signed graph). This was later used by Zaslavsky [18] in
a formal graph-theoretical setting. More recently, Iacono
et al. [19] use sign switches in an algorithm for calculating
the line index of imbalance.

Definition 6 (Switching). Let G = (V,ET,E™) be a
signed graph with signed adjacency matriz A and let Vy
and Va be a partition of V.. Then let s; =1 ifi € V1 and
s; = —11ifi eV, with S = diag(s) and define A=SAS
so that Aij = s;A;555. Then the graph G defined by A
is called a switching of G defined by the partition V1 and
Vs.

Hence, for a link (i,j) with ¢ € V5 and j € Va, then
Aij = _Aija while if both i,] € % (or 1,] € ‘/2)7 Aij =
A;j. In other words, switching means we invert the signs
of links across the cut by the partition V; and Vs, as
illustrated in Fig. 3. Most importantly, any switching

preserves the balance of any cycle.

Theorem 8. Let G = (V, ET, E™) be a signed graph and

let G be a switched signed graph. Denote by sgng(C) the
sign of some cycle C' with respect to G.Then for any cycle
C, sgng(C) = sgnea(C).

Proof. Let C be a cycle and let Vi and V5 be a parti-
tion of G. Let mZ, be the number of positive/nega-
tive links across the cut between V; and V5 in G and

miithin the number of positive/negative links within V;

or V. Then sgng(C) = (—1)"eutTMwinin. Hence there

+
cut

5 — ot 5 - m- o in G

are My, = Mgy, and Mg, = Mg, across tfe cut in G,

while M0 = Mgn,- By definition mJ,, + mg, is

even since any cycle must cross V; and V5 an even num-
. + -

ber of times. In other words, (—1)"euttT™eue = 1 and

hence (—1)7":rut = (—1)™eue. We thus obtain
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Recall that the line index of imbalance is the minimum
number of signs that would need to be changed to make
the graph structurally balanced. So, if the balance of the
cycles does not change, then neither would the minimum
number of sign changes required, and hence the line index
of imbalance remains the same.

Theorem 9. Let 0; = {—1,1} be a partition of G and
let S be a switching of G. Then the switched partition
6 = oS has the same imbalance for the switched graph

G.

Proof. The imbalance the partition o on G is cAc", and
for the switched partition and graph we have

6A6" =08SASSo" = Ao (36)
because SS = 1. O

Even if the partition itself is not balanced, switching is
defined for any partition. If G is balanced, we can take
the balanced partition V; and V5, in which case all the
negative links become positive (because they fall between
V7 and V3), so that we end up with a completely posi-
tive graph. In reverse, the same thing holds: if we can
find a switching S such that SAS is completely positive,
G is balanced, and the switching S defines the optimal
partition. See also Hou et al. [16]. The same principle
does not hold for weak structural balance. For example,
a triad with three negative links contains a single one
after switching so that the original was weakly balanced
but the switched one is not.

When Abelson and Rosenberg [17] introduced the idea
of switching, they considered a node with the maximal
difference of the positive and negative degree: dj' —d; .
Switching the signs of all its links would then decrease the
total number of negative links, while the balance would
remain unchanged. The final number of negative links
then gives an upper bound on the number of negative
links that would need to be removed (or switched) in
order to yield structural balance. In other words, it pro-
vides an upper bound on the line index of imbalance.

More recently, a rather similar approach was used by
Tacono et al. [19]. They follow the same procedure as



Abelson and Rosenberg [17] for reducing the number of
negative links to arrive at an upper bound for the line
index of imbalance. The optimal solution may contain
even fewer negative links. Iacono et al. [19] also provide
a way to arrive at a lower bound. The key idea is to
associate each negative link to an edge-independent un-
balanced cycle, which is easier if the graph contains few
negative links. This procedure relies on the fundamental
cycles we briefly encountered earlier. Clearly at least one
link must change for each edge-independent unbalanced
cycle. Even though some cut set may reduce the num-
ber of negative links, no cut set can reduce it more than
the number of the unbalanced edge-independent cycles.
Hence, this provides a lower bound on the line index of
imbalance.

B. Weak structural balance

The previous subsection dealt only with a split in two
factions. We can provide similar definitions for a split in
multiple factions. In particular, the number of inconsis-
tencies with structural balance for a given partition into
Vi, Va,..., Vy is

c=1 Y v+ e, 67)
2Vz‘¢Vj Vi

Note that if a network contains only positive or only
negative links, the minimum line index of imbalance is,
by definition, 0. For a network of only positive links,
the trivial partition consisting of a single cluster provides
such a solution. Similarly, for a network of only nega-
tive links, the trivial partition consisting of each node in
its own cluster, commonly called the singleton partition
achieves zero imbalance.

However, if all links are negative there is an interest-
ing problem: finding the minimum number of factions
required for obtaining an imbalance of 0. Having n fac-
tions (clusters), with each node in its own faction with an
imbalance measure of 0, most often, has little value. It is
reasonable to think that this measure could be achieved
with fewer factions. For example, for a bipartite graph
with all negative links, we have to use only 2 factions.
This minimum number of factions necessary to obtain
an imbalance of 0 is known also as the chromatic num-
ber: the minimum number of colors necessary to color
each node such that two nodes that are connected have
different colors. This is a much studied area of research in
graph theory. It is an NP-complete problem. This con-
nection was recognized by Cartwright and Harary [11].
The similar problem for positive links is oddly enough
trivial: the maximum number of communities for which
the imbalance is still 0 simply corresponds to the con-
nected components.

C. Blockmodelling

The original block model function proposed by Doreian
and Mrvar [8] is exactly equivalent to the line index of
imbalance. They also propose a more general form how-
ever, weighting differently positive or negative violations
of balance:

C=aCt+(1-a)C~ (38)

where a = 0.5 returns (half) the original line index. How-
ever, this generality comes with costs. Without surprise,
different values for a return different values of C'. More
consequentially, different partitions of the nodes can be
returned. This implies there is no principled way for se-
lecting a value of v and hence a partition. This issue was
noted by Doreian and Mrvar [20]. It can be called ‘the
alpha problem’ which amounts to understanding the in-
terplay of the number of positive and negative links in a
signed network, the shape of the criterion function, and
the role of & in determining partitions.

The blockmodeling approach partitions the nodes into
positions and the links into blocks which are the sets of
links between nodes in the positions. There is only one
type of blockmodel in accordance with structural bal-
ance: positive blocks on the main diagonal and negative
blocks off the diagonal. Of course, for most empirical sit-
uations, the links contributing to the line index for imbal-
ance are distributed across blocks. To address this, Dor-
eian and Mrvar [21] examined other possible blockmod-
els. They considered two mutually antagonistic camps
being mediated by a third group (either internally nega-
tive or not). So, rather than seeking a blockmodel con-
sisting of diagonal positive blocks and off-diagonal nega-
tive blocks, they proposed blockmodels with positive and
negative blocks appearing anywhere. For the empirical
networks they studied, the results were better fits to the
data, according to the line index, and more useful parti-
tions. Unfortunately this comes at a price: if the number
of clusters is left unspecified a priori, the best partition is
the singleton partition (i.e. each node in its own cluster).
This line of research is further studied by [22, 23].

Stochastic block models can also deal with negative
links [24], but we do not discuss them further here.

D. Community detection

Assuming structural balance holds for a network, the
resulting partition is a set of clusters with primarily pos-
itive ties within them. Structural balance models would
not be informative for networks without negative ties.
Even so, the positively-connected clusters may contain
some further sub structure. Most networks that contain
only positive links can show a clear group structure, com-
monly called community structure or modular structure,
covered in Chapter 3 in this book. One of the most pop-
ular methods for community detection in networks with



only positive links is known as modularity. It is defined
as

did;
¥

where it is assumed that A;; only contains positive entries
and o; denotes the community of node i (i.e. if o; =
¢ it means that node i is in community ¢) and where
§(0i,05) = 1 if 0, = o, and otherwise §(o;,0;) = 0.
Although this method suffers from a number of problems,
most prominently the resolution limit [25], it seems to
return sensible partitions for graphs with only positive
links.

However, modularity suffers from a problem when
some of the links are negative [26, 27]. In particu-
lar, imagine there are two fully connected subgraphs,
the first with n; = 5 nodes and the second with only
ny = 2 nodes while there are nyny = 10 negative links
between these two subgraphs. Using the ordinary defini-
tions, the weighted degree for the first subgraph would
be d; = 4 — 2 = 2 because each node has 4 links to the
other in the subgraph, and 2 negative links to the other
subgraph. Similarly, the weighted degree for the second
subgraph is d; = 1 — 5 = —4, and the total weight is
m = (g) + (5) —5-2 = 1. Hence, for any link within the
first subgraph,

Jalone) ()

didj 4 _2-2_ (40)

i —
J 2m

and for the second subgraph
did; | (=4)(=4)

Aij — 5 5 =7 (41)
and for any link in between
d;d; 2)(—4
Aij — 3:1—()( ):3. (42)

2m 2

This is rather surprising, as it says that two nodes that
are positively connected should be split apart (their con-
tribution is negative), while two negatively connected
nodes should be kept together (their contribution is pos-
itive). Of course the correct partition here should be
a partition into two communities: all nodes of the first
subgraph forms one community and all nodes of the sec-
ond subgraph forms the other. However, summing up
the contributions in Eq. (40) and Eq. (41) the quality of
such a partition would be

5-4 2-1

(D S () =T (43)

while if there is only one single large partition, adding
the contribution from Eq. (42), we obtain

—1745-2-3=13. (44)

In short, modularity cannot be simply applied to signed
networks, as the results are inconsistent with the correct

partition (cf. [20]). Hence, modularity needs to be cor-
rected in some way to account for the presence of negative
links for it to be useful for signed networks.

Consistent with structural balance, we would expect
negative links to be between communities, while the pos-
itive links are within communities. Hence, if we define
the quality of the partition on the positive part as

drdr
QT = Z (Ajj - 2mﬂ> (0, 0;) (45)
ij
and on the negative part as
d, d:
ij

then we should like to maximize QT and minimize Q.
We can do so by combining Q@ = Q* — @~ which then

becomes

drdt d-d-
_ o O B R

Q= E Ay <2m+ 2m— )] (04, 05) (47)

ij

where A;; = A;; — A;; as throughout this chapter. In
essence, this comes down to using a null-model that is
adapted to signed networks. More details can be found

in Traag [28], Chapter 5.

More generally speaking, one could always define QT
for a partition on the positive subnetwork and @~ on the
negative subnetwork and then define a new quality func-
tion as Q@ = QT — Q. For some methods this turns out
to give quite nice results, for example for the Constant
Potts Model (CPM) [29]. This method was introduced
to circumvent any particular form of the resolution limit.
The formulation (again assuming A;; is only positive) is
simple:

Q= Z[Aij —9é(0i,05). (48)

Here v plays the role of a resolution parameter, which
needs to be chosen in some way. This parameter has
a nice interpretation though, which could motivate a
particular parameter setting, and functions as a sort
of threshold. In any optimal partition, the density be-
tween any two communities is no higher than ~, i.e.
ecd < Yneng where e.q is the number of edges between ¢
and d and n. and ng the number of nodes in that commu-
nity. Similarly, any community has a density of at least
v, i.e. e > 7("2) Even stronger, in fact, any subset of
a community is connected to the rest of its community
with a density of at least « in an optimal partition.

If we extend our previous suggestion of combining the



positive and negative parts we arrive at the following:
Q=Q"-Q (49)
=3 (A =110, 05)—
j

4G — 7 1d(o1,,) (50)
=3 l5 - A7) = (0 =2 by (51)

which, by setting v =y — 77, leads to

Q=3 l4y —o(ow.0). (52)

In other words, for CPM, there is no need to treat nega-
tive links separately, and we can immediately apply the
same method.

Finally, for v = 0, CPM is equivalent to optimizing the
line index of imbalance. Indeed, note that we can write
the line index of imbalance as

C =53 [40(00,01) + AL = o)) (53

We can rewrite this as

C = 5 3 (A0 o) + A1 = 0w o] (54

= 33 145 — A)ilos,0) + A7) (55)
—mT — %ZA,-jé(ahaj). (56)

so that C = m™* — —1Q for the CPM definition of Q.

Given any particular quality function, the problem is
always how to find a particular partition that maximizes
this quality function. In general, this problem cannot be
solved efficiently (it is NP-hard), and so we have to em-
ploy heuristics. One of the best performing algorithms
for optimizing modularity is the so-called Louvain algo-
rithm [30]. Tt can be adapted for taking into account
negative links. In addition, it can also be adapted for
CPM (and other quality functions still). See https:
//pypi.python.org/pypi/louvain/ for a Python im-
plementation designed for handling negative links and
working with these various methods.

We do not discuss in detail how the algorithm works,
but do discuss one particular element that needs to be
changed for dealing with negative links. The basic in-
gredient of the algorithm is that it moves nodes to the
best possible community. Ordinarily, in community de-
tection, all communities are connected, and hence, the
algorithm only needs to consider moving nodes to neigh-
boring communities. However, this property no longer
holds when negative links are present. A trivial exam-
ple is a fully connected bipartite graph with all negative
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links. In that case, none of the nodes in any community
are connected at all. When only considering neighbor-
ing communities, the algorithm never considers moving
a node to a community to which it is not connected. In
the end, if the algorithm starts from a singleton parti-
tion (i.e. each node in its own community), it will re-
main there. So, we need to calculate the change in () for
all communities, even if it is not connected to that com-
munity. Unfortunately this increases the computational
time required for running the algorithm. Nonetheless,
the algorithm is quite fast. Of course, it only provides
a lower bound on the optimal quality value. Hence, for
minimizing the line index of imbalance it only provides
an upper bound.

1. Temporal community detection

One concern when studying the evolution of balance is
that we also would like to track the partition over time.
For example, if we have two network snapshots and we try
to detect the partition minimizing the imbalance, there
is an arbitrary assignment to the clusters —1 and 1 (or
0 and 1) in the sense that simply relabeling the parti-
tion by exchanging the —1 and 1 yields exactly the same
imbalance. For two communities this is still reasonably
limited, but for more communities the problem may be-
come more difficult, especially when dealing with many
snapshots throughout time.

We rely on a method introduced by Mucha et al. [31]
to do temporal community detection, while still account-
ing for negative links. Because this is not the core issue
in this chapter, we discuss it only briefly. The idea is
to create one large network, which contains all the snap-
shots of the same network. Then, each node represents
a temporal node: a combination of a time snapshot and
the original node. Without any links between the differ-
ent snapshots, the large network would thus consist of
as many connected components as there are snapshots
(assuming each snapshot is connected). Each snapshot
is commonly called a slice, and each link within a slice
is called an intraslice link. We introduce additional in-
terslice links, which connects two identical nodes in two
consecutive time slices (i.e. they represent the same un-
derlying node, but at a different time) with a certain
strength, called the interslice coupling strength. This
requires also some additional changes on the Louvain al-
gorithm.

IV. EMPIRICAL ANALYSIS

Empirical research has shown that while few empirical
networks are close to balance, at least they are much
closer than can be expected at random. Hence, there
is considerable evidence that structural balance holds to
some extent, at least for weak balance. The evidence
for strong structural balance is far more modest with
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many exceptions present in the literature. In particular,
the all negative triad was found relatively frequently by
Szell et al. [32] contradicting strong structural balance.
They found triads having a single negative link (which
is the only triad that is weakly unbalanced) much more
rarely. Overall, their evidence favors weak structural bal-
ance over strong structural balance. Contrary to dynam-
ical models of sign change, they find that links almost
never change sign. However, there is relatively little re-
search into the dynamics of structural balance. Examples
where this has been done include Hummon and Doreian
[33], Doreian and Krackhardt [34], Marvel et al. [35], and
Traag et al. [36].

We here briefly investigate the dynamics of the network
of international relations, where structural balance is ar-
gued to play a role by Doreian and Mrvar [20]. We gath-
ered data from the Correlates of War[37] (CoW) dataset,
which collects a variety of information about interna-
tional relations. We create a signed network based on
their latest data on alliances (v4.1), representing the pos-
itive links, and the militarized interstate disputes (MID,
v4.1), representing the negative links. To arrive at a sin-
gle weight for each link, we sum the different weights
on alliances and MIDs for each dyad (a dyad can be in-
volved in multiple alliances and multiple MIDs at the
same time). Each MID generates an undirected (neg-
ative) link for all states that are involved on different
sides. For example, if the US and the UK would be in
conflict with Egypt and the USSR, then this would gener-
ate four negative links: US-Egypt, UK-Egypt, US-USSR
and UK-USSR. The MID weight is set to %ﬁmct SO
that the weight is in [0, 1] (see CoW documentation for
more details). Each alliance generates a link for all dyads
involved in the alliance. The weighting is more compli-
cated, since no a priori weights are assigned. We chose to
weigh a defense pact with a weight of %, nonaggression
by a weight of 1—24, and both a neutrality and an entente by
a weight of 1—14. The single weight is then the sum of the
alliance weight minus the sum of the MID weight. Note
that a dyad may be involved in multiple MIDs and/or
multiple alliances at the same time, so that the individ-
ual weight of a link is not necessarily restricted to [—1, 1].

We find that structural balance does not follow any
singular trend, and certainly does not converge to struc-
tural balance and remains stable. The same was found
by Doreian and Mrvar [20] and Vinogradova and Galam
[38] where an earlier version of the CoW data was used.
We detect communities using CPM with v = 0 and use
the approach by Iacono et al. [19], which we abbrevi-
ate as IRSA (after the authors). We ran the Louvain
algorithm for CPM both with unlimited number of com-
munities (corresponding to weak structural balance) and
also with the number of communities restricted to two
(corresponding to strong structural balance).

IRSA provides less stable results compared to the CPM
estimates (see Fig. 4). Perhaps, with more computa-
tion time, more accurate results could be achieved. Even
so, regardless of the method, no clear stability emerges.
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FIG. 4. Balance timeline. The line index of imbalance
using two different methods. The approach by lacono et al.
[19] only works for strong balance. The CPM approach can
be applied both the strong and weak balance. CPM seems
to provide more stable results than the approach by lacono
et al. [19].

There are some large peaks of imbalance around WWII,
which we discuss. But during the Cold War, and even
after the Cold War, no particular convergence towards
0 imbalance is observed. This is not unreasonable, as
the international system is subject to new shocks when
new conflicts, some of which are major conflicts, emerge.
Rather than settling at some level of balance, some un-
balance remains in the system which never completely
dissipates. Most often, the difference between strong and
weak structural balance usually is not so large. This im-
plies that a partition of nations into just two factions
already explains much of the structure in international
relations. At face value, this suggests that strong balance
is at least a reasonable first approximation, and provides
some evidence that strong balance is operating in the
international system. It is likely that weak balance op-
erates also, perhaps at different timescales. Nonetheless,
there are some clear deviations in the patterns of imbal-
ance.

In particular, both TRSA and CPM find that 1944
shows a large peak with an imbalance of 43.9 (CPM) or
47.4 (IRSA), whereas weak structural balance only has
an imbalance of 3.14. For this time point, using weak bal-
ance may be more useful. This result is due to the large
number of conflicts among various parties, which weak
balance can accommodate, but which presents problems
for strong balance (see Fig. 5). Indeed, of the 1785 triads
in this network, there are 411 strongly unbalanced tri-
ads, of which 406 are all-negative triads. The all-negative
triad is considered unbalanced under strong balance, but
balanced under weak balance. This leaves only 5 unbal-
anced triads under weak balance (although this does not
preclude the existence of longer unbalanced cycles).

Many of the all-negative triads are attributable to con-
flict among nine different countries who were all in con-
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FIG. 5. International Relations 1944. The solid lines rep-
resent positive links and the dashed lines represent negative
links. The countries that are clustered together are encircled.

flict with each other: France, Germany, Italy, Hungary,
Bulgaria, Romania, Russia, Finland, and New Zealand.
Many other countries were opposed to at least two others
of this large conflict: Japan for example was in conflict
with both Russia and New Zealand. These conflicts may
be unrelated. But they serve to create an additional un-
balanced triad (in the strong sense). The weakly unbal-
anced triads involve the UK and Turkey. The UK was
allied with Portugal and Turkey, but Portugal was also
allied with Spain (through the alliance between the dic-
tators controlling both countries) which was in conflict
with the UK. Turkey was allied with Germany, Hungary
and Iraq in addition to the UK while the UK was in
conflict with both Germany and Hungary. At the same
time, Germany was also in conflict with Hungary and
Iraq, complicating things further. Clearly, WWII fea-
tured many dyadic conflicts, each with their own dynam-
ics.

There is another interesting observation: weak struc-
tural balance is higher than strong structural balance for
1939. This should not be the case ordinarily, as the min-
imal imbalance in weak structural balance should always
be lower than strong structural balance. This then seems
due to the shift of alliances during WWII. Since the clus-
tering also favors a certain continuity over time, it may
be better to cluster countries in a more stable way, with-
out accounting for short term deviations. This is what
seems to happen in 1939. In particular, Russia was still
allied with Germany and Italy, while Russia is in conflict
with the UK, France and Belgium at that time. Similarly,
Hungary is allied with Turkey, and Spain with Portugal.
Surprisingly, the UK also had some conflict with the USA
at that time according to the CoW data.

At the height of the Cold War, we see the familiar divi-
sion (see Fig. 7). We also see the non-aligned states clus-
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FIG. 6. International relations 1939. The solid lines rep-
resent positive links and the dashed lines represent negative
links. The countries that are clustered together are encircled.

tered outside of the familiar division. Yet some countries
are clustered differently than what one would expect. For
example, much of the Arab world is clustered with the
West because of the alliance of Morocco and Libya with
France. But note that Algeria is not as it was fighting
a war of independence with France. Also, Yugoslavia is
commonly seen as non-aligned in the Cold War, but here
it is clustered with the West through its alliances with
Greece and Turkey.

Finally, in more recent times the weak balance cluster-
ing seems increasingly unrealistic. This is due to the fact
that even if some countries are only weakly positively
connected, they are immediately considered as a single
cluster. In 2010 for example, most of the world is grouped
together in a single cluster, except Africa and some ex-
ceptions. Nonetheless, some clearly separate clusters ex-
ist. We therefore also detected clusters using CPM with
v = 0.1 for 2010. The results are shown in Fig. 8. There
are clearly different clusters in Africa, something missed
completely when partitioning with weak structural bal-
ance. Africa is divided into a Central African bloc, a
Western African bloc, and a Northern African bloc clus-
tered with Arab nations in the Middle East, with the
remainder of Africa scattered across other communities.
The former USSR remains a separate community. The
so-called West breaks into two communities: North and
South America constitute a community whereas Europe
becomes a separate community.

This is also interesting from another perspective.
Structural balance emphasizes both that negative links
ought not exist within clusters and positive links ought
not exist between clusters. This seems too restrictive
by ignoring the presence of some conflict within clusters
along with positive ties between clusters. Arguably, it
makes more sense to allow for a few positive links between
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FIG. 8. Map of CPM partition with v =0.1 in 2010.

clusters without requiring them to be considered imme-
diately a single cluster. Indeed, when using CPM with
~v = 0.1 relatively less conflict happens within clusters,
and most conflict takes place between clusters. Nonethe-
less, strong balance remains a reasonable first approxi-
mation.

V. SUMMARY AND FUTURE WORK

Partitioning signed networks raises methodological issues
that differ from those involved in partitioning unsigned
networks. Various approaches have been developed. We
started our discussion with a consideration of structural
balance as it provides a substantively driven framework
for considering signed networks. Formulated in terms of
exact balance, the initial results in the literature take the
form of existence theorems, which we discussed in some
detail. We distinguished strong structural balance and
weak structural balance. Empirically, most signed net-
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works are not exactly balanced. One of the underlying
assumptions of classical structural balance theory is that
signed networks tends towards balance. To assess such
a claim, it is necessary to have a measure of the extent
to which a network is balanced or imbalanced. We dis-
cussed some of the measures in the literature but focused
primarily on the line index of imbalance. Obtaining this
measure is an NP-hard problem. We provided theorems
regarding obtaining this measure and its upper and lower
bounds.

In discussing strong structural balance, we considered
spectral theory and presented some results showing how
this is another useful approach for obtaining measures
of imbalance. In doing so, we revisited the concept of
switching. For partitioning signed networks, we consid-
ered signed blockmodeling as a method, pointing out its
value and serious limitations. We considered community
detection and outlined ways in which is can be adapted
usefully to partition signed networks. In discussing this
we considered also the Constant Potts Model (CPM) and
how it can be used to partition signed networks. We dis-
cussed briefly the notion of temporal community detec-
tion.

With the formal results in place, we turned to an em-
pirical example using data from the Correlates of War
(CoW) data. We applied two methods to obtain parti-
tions for different points in time. We made no attempt
to assess which is the ‘best’ partitioning method, for they
all have strengths and weaknesses. However, we did ini-
tiate a discussion regarding the conditions under which
one method may perform better than others—without
being universally the ‘best’ under all conditions. This
included a discussion of the utility of weak balance and
strong balance, the number of clusters and the temporal
dynamics of the empirical network we studied.

Our results, consistent with other results for the CoW
networks produced by others, is that, temporally, signed
networks can move towards balance at some time points
and away from balance at others. The assumption that
signed networks tend towards balance had unfortunate
consequences. The more important question, substan-
tively, is simple to state: What are the conditions under
which these changes take place? To some extent, this
mirrors the issue of when some methods work better than
others. The two are related. Together, these issues will
form a focus for our future work both analytically and
substantively.
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