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Abstract

Protesters are usually young, relatively well educated, middle class people
that are politically engaged. But where do protesters come from? We here
show, based on mobile phone data, that distance is an important impedance
to protest attendance. Most protesters come from nearby regions, suggest-
ing distance forms an obstacle to participation. Although this effect can be
partly explained by social network effects, which show similar spatial de-
pendencies, an effect of distance remains. This suggests distance still acts
as an obstacle to participation, although it may also be that long-range
contacts are less effective for recruitment. Face-to-face contacts seem more
important in spreading protests through earlier participants, whereas cen-
tral recruitment works better by telephone. Our results are important for
understanding processes of recruitment.
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1. Introduction

In recent years many protests have captured the attention of people
across the globe. In 2011 protests broke out across the Arab world, aspiring
to a more democratic rule. In early 2014 protests in Kiev led to the fall
of Yanukovich. The economic crisis triggered protests ranging from the
Spanish Indignados to Occupy Wall Street. From earlier studies, we know
that protesters are generally young, well educated, biographically available,
and politically engaged [1]. But where do protesters come from?
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Protests and contentious politics more generally have been intensely
studied [2, 3, 4] and scholars are long fascinated by how they diffuse [5, 6].
Most of the literature focuses on large-scale diffusion of protests [4, 5] rather
than the diffusion of individual participation in protests. As such, they anal-
yse how the protest as a whole diffuses, not how individual participation
comes about. Individual participation is more closely studied in the context
of mobilisation and recruitment [7]. Under the umbrella term of “differen-
tial recruitment” scholars analysed what type of people tend to participate
in protests. Besides the aforementioned individual characteristics, one of
the most clear empirical regularities in studies of protest recruitment is the
role of the social network [7, 8, 9, 10, 11, 12, 13]. There are usually many
people that are positively disposed towards the goals of a protest [8]. Yet
few participate unless they are asked by others [9]. Knowing people in the
movement is one of the best predictors of participation [10], especially in
high-risk activities [11].

Yet this literature on recruitment does not address how distance impedes
participation to protests. We address that caveat here, using mobile phone
data. We find empirically that distance indeed affects participation and
that most protesters have local origins. In addition, we model this empirical
regularity using various approaches. Although the models considered may
be somewhat rudimentary, they serve as a first stepping stone towards more
realistic models. Social networks are known to have a strong impact on
participation, but also exhibit spatial regularities [14, 15]. We find that
although the social network partly explains the spatial pattern of protest
participation, distance still has an effect. This suggests that distance acts
as an obstacle to participation.

2. Results

2.1. From mobile phones to protests

We analyse protest participation in an undisclosed African country on
the basis of mobile phone data. Such data have been used before to study
attendance of people in other events, such as baseball games or theatre
shows [16] or simply their presence at mass gatherings [17] and to study
reactions to emergencies [18, 19]. Yet protests have never been analysed
using mobile phone data. Such mass gatherings can be detected based on
mobile phones [20, 21], although it is difficult to determine the exact type of
event. Mobile phone data also provide insight in human mobility in general,
and reveal lots of regularities [22, 23, 24, 25, 26, 27, 28, 29], see [30] for
an extensive review. Protests may take many different forms [3], but we
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restrict ourselves here to those forms that require a physical presence, thus
excluding forms such as petitions or letter writing. Other research has relied
on online service such as social media. Twitter has for example been used
to study the attendance of protests [31] while Flickr has been used to study
the occurrence of protests [32]. The penetration rate of such services is quite
low in African countries [33], thus precluding their use for our study.

We estimate participation in a protest by considering the location and
time information from the mobile phones. The idea (similar to [20]) is that
we assume people to participate in a protest if they are present during the
protest, but otherwise not regularly there (see method section for details).
Obviously, this will entail a certain degree of error: (1) some people will
participate, but not show up on the mobile phone data; (2) not all people
that are present will participate in the protest; and (3) some people that are
regularly present in that location can still protest. Nonetheless, it was shown
earlier that this technique can uncover participants [20]. In general, mobile
phones are expected to show some bias related to socio-economic (wealthier
people more likely to own a mobile phone) and geographic (urban people
more likely to own a mobile phone) conditions. We expect the errors in our
methodology for identifying participation to increase the uncertainty, but
not to produce any additional bias.

We consider users to reside at the location where they are most regularly
seen (see method section for details). This way we infer the number of
protestersmj and the total number of users nj from a location j. In addition,
we know the number of calls wcalls

ij and the total duration of the calls wduration
ij

between two locations i and j. Based on the individual level CDR data we
also estimate the total number of trips wtrips

ij between two locations i and j
(see method section for details).

We used the Armed Conflict Location & Event Data (ACLED) project1

for determining where and when protests took place [34]. They recorded
political violence and conflict from 1997 onwards in over 50 different coun-
tries and provide latitude-longitude coordinates of all events. We thus only
use the ACLED data to determine where and when protests took place. We
study 39 events marked as “riots/protests” from a single year for which we
have mobile phone data. They took place throughout the year and were
not particularly clustered in time. The events have been covered by local
media and press agencies, and at time by international agencies, but none
of them received much attention in the international media. We analyse

1http://www.acleddata.com/
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Figure 1: Protest participation. Protesters usually concentrate around the protest.
The distance dependence can be well captured by geographical models such as the gravity
model (as illustrated by the red circles). The spatial patterns may be partially explained
by the communication network (as indicated by the lines in blue). If a location is better
connected to the protest location, there are generally more protesters from that location.
Even when controlling for the social network, distance has an effect on participation. Long
distance communication is thus less effective for recruiting people, or remains an obstacle
for people to participate.

the geographic origins of people present during these events. We infer the
presence of people from the usage of mobile phones in the antenna that
is closest to the coordinates provided by ACLED. The density of such an-
tennas is typically higher in urban areas than in rural areas, leading to a
resolution of several hundreds of meters in the former, but a resolution of
several (dozen) kilometres in the latter. Of the 39 events, we found 32 that
took place in an urban environment, while 7 took place in a rural setting
(including small towns up to 20 000 inhabitants). Similarly, we infer the
origin of people based on the most frequently used antenna. Using this
method, we uncovered around 300–400 participants in our dataset (average
340) for the 39 protests, but it varied from 27 to 1105 (Fig. 2). On average,
the urban protests had 394 participants coming from 15 km away, while the
rural protests only had 92 participants coming from 33 km away. It could be
that this is affected by a bias in mobile phone ownership, which is usually
concentrated in urban areas. The lower antenna density in rural areas may
also bias these results, as antennas are further apart than in urban areas.
Unfortunately, no alternative source is available to corroborate our estimate
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of the number of participants. Additionally, some other events may have
taken place simultaneously, thus obfuscating our results. Nonetheless, it is
unlikely this is the case for all 39 protests. See the methods section at the
end for more details.
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Figure 2: Number of participants. Histogram of the number of participants uncovered
by the mobile phone data for the different protests. This is concentrated around 300–400
participants for most protests.

2.2. Analysis

We find that most protesters indeed come from relatively close by. The
average distance between the origin of a protester and the protest location is
about 20 km. On average, roughly 83% of the protesters come from within
the average distance. But how does participation depend exactly on the dis-
tance to the protest location? There are various factors that may influence
how protest attendance decays over distance (see Fig. 1 for an illustration).
Participation may simply decrease because it cost something to overcome a
certain distance. But there may also be some network effects: people further
apart are less likely to be connected.

2.2.1. Geographic models

We initially model distance as an impedance to participation. Let us
denote by i the location of the protest, and we are then interested in the
number of participants mj from location j. Following classical geographical
models [35], the impedance increases with distance dij between location i
and j. If the cost to participate increases linearly with distance, we obtain an
exponential decay of participation with distance, whereas if the cost depends
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logarithmically on the distance we obtain a powerlaw decay [36, 37]. This
behaviour could be derived from maximum entropy arguments [37], although
the foundations of the gravity model have been debated [26]. Additionally,
the number of participants from location j scales with the number of people
nj , where we allow for non-linear scaling. Denoting by m̂j the predicted
number of participants, we thus obtain the classical gravity model2

m̂j = Z
nβj

(dij + δ)γ
, (1)

where Z, β, γ and δ are free parameters that are estimated from the data.
Higher β means that relatively more people come from more denser popu-
lated areas. We here use the powerlaw decay (dij + δ)γ which works better
than exponential decay and a powerlaw decay with exponential cut-off [35]
(see method section for fitting details). In general, higher γ increases the
decay of participation over distance. For γ = 0 there is no dependence on
the distance, and for γ = 1 the decay is linear (i.e. half the people par-
ticipate at twice the distance). We use (dij + δ)γ instead of dγij since we
also estimate the number of protesters at the protest site itself, for which
dij = 0. We find that this model quite accurately predicts the number of
protesters from a location j (R2 ≈ 0.63, for alternative fitting statistics, see
Table A.1 and methods3). The number of participants scale with distance
with an exponent of γ ≈ 1.8, and with the number of users with exponent
β ≈ 0.78 (Fig. 3(a)–(d) and Table A.2). Every doubling of the distance
thus reduces the number of participants to roughly one third. The scaling
with the number of users is sublinear, which surprisingly suggests that more
populous locations are less likely to engage in protest, whereas more urban
participation would be expected [38].

Arguably, the effect of distance is mostly an effect of overcoming obsta-
cles to participation [8]. Travelling a certain distance always costs money
and time, and as such, it may become increasingly unlikely to exceed any
(perceived) benefits from the protest. However, it has been argued that
rather than distance dij itself, the number of intervening opportunities in

2The classical gravity model stipulates that the interaction between two locations is a
product of both ni and nj . We estimate the participation for each protest separately, so
that ni is constant for that protest.

3Generally, R2 is flawed for model selection in the case of non-linear least squares. We
therefore corroborate our findings using alternative statistics such as Akaike’s Information
Criterion (AIC) and the Root Mean Square Error (RMSE). The alternative statistics are
in line with the conclusions drawn from R2.
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between two locations is more important in explaining spatial patterns [39].
From the perspective of protesters, the idea of (intervening) opportunities
makes no sense. After all, it is unlikely that one finds alternative protests
closer by (unless there are nation wide protests, which would make an inter-
esting case). However, from the point of view of recruitment there are many
opportunities. After all, to a recruiter, everybody is a potential protester
and thus presents an opportunity for recruitment. Let us assume that the
organisers are trying to recruit people from the protest location. Generally,
recruiters try to maximize their impact with minimum means [40]. Since
travelling takes time and effort, it is more efficient to recruit close by. More-
over, people close by may be more responsive, so that it may also be more
effective. Hence, the organisers first try to recruit people close by, and only
try to recruit people further away whenever they could not recruit anybody
closer by. For simplicity sake, let us assume that everybody has the same
fixed recruitment probability p. So, whenever somebody is contacted by the
organiser, with probability p he or she will join the protest. Somebody from
location j will only be contacted by a recruiter if nobody closer by joined.
The probability nobody joined before is (1− p)ni+nij , where

nij =
∑
k 6=i

dik<dij

nk

denotes the number of people closer to location i than location j. The prob-
ability that somebody in location j did join is then 1− (1− p)nj . Assuming
there are Z (successful) recruiters, the total number of participants from
location j is then expected to be

m̂j = Z(1− p)ni+nij (1− (1− p)nj ). (2)

We estimate Z and p from the data for each protest, while ni and nij are
directly available. Interestingly, this intervening recruitment model is iden-
tical to an early model of intervening opportunities [41], which has become a
standard formulation in geography [35]. This intervening recruitment model
performs much better than the recently introduced radiation model [26]
(R2 ≈ 0.55 versus R2 ≈ 0.31). It fits the data less well than the gravity
model though (see Fig. 3(a)–(d) for comparing the two). This model of re-
cruitment is thus less likely, and participation drops more because of pure
distance than because of the number of people closer by. As such, either the
model of recruitment is unrealistic, or distance itself functions to create an
obstacle to participation [8], independently of the population density.
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2.2.2. Network models

When people join a protest, they often already know others in the move-
ment [7]. Social networks are known to exhibit spatial dependencies that
can be modelled by the gravity model [14, 15] or the radiation model [26].
Our social network only consists of interaction between locations, and we
try to model this interaction wij between two locations i and j. We find
that the gravity model provides a good fit (R2 ≈ 0.67) for both the com-
munication and the mobility in our dataset (Fig. 4 and Table A.3). Both

scale approximately as wij ∼
√
ninj

(dij+δ)γ
, with γ ≈ 1.18 for the number of

calls and the number of trips, while the duration decays much slower with
γ ≈ 0.86. Nonetheless, the gravity model underestimates the interaction at
larger distances (see Fig. 4(a)–(c)). The radiation model is again a signifi-
cantly poorer fit (R2 ≈ 0.54). In short, the social network also shows a clear
distance effect, and perhaps decreasing participation is simply an effect of
the social network. We now investigate this possibility in this section.

We again assume that the organisers are trying to recruit people from the
protest location. In this network model we assume they will call people. The
total number of calls in between two location is wcalls

ij , so that the average

number of calls somebody in location j receives from i is Λij = wcalls
ij /nj . We

assume again that everybody has a fixed recruitment probability p for each
call. The probability that somebody from location j will join the protest is
then 1− (1− p)Λij if he had been contacted by the organisation. Although
it could be argued that the contact intensity Λij should be scaled with a
parameter α to arrive at 1− (1− p)αΛij , this is a degenerate formulation, as
we can also write this as 1− e−αφΛij with φ = − log(1− p), so that there is
essentially only a single parameter γ = αφ. In total there are nj individuals
at location j, and we assume only a fraction of q have been contacted by the
organisation. Similar to the gravity model, we allow for a non-linear scaling
with the number of users, and arrive at

m̂j = qnβj (1− (1− p)Λij ). (3)

We call this the direct contact model, because we do not consider any ad-
ditional cascades of participation or second order effects. We find that this
model fits well (R2 ≈ 0.68) using the number of calls (see Fig. 3(e)–(h)),
although the mobility also works quite well (R2 ≈ 0.67), but the duration
works less well (R2 ≈ 0.58). The scaling with the number of users varies and
is superlinear for communication but sublinear for mobility, so that results
on this effect remain inconclusive.

It could be argued that rather than people being recruited only by the or-
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ganisation, participants may also recruit others to join the protest. Hence,
there may be additional cascades of participation or indirect, higher or-
der effects, thus triggering further diffusion. We here use the so-called SI
model [42] in which every protester has a fixed probability of convincing a
friend or acquaintance to join the protest. However, we do not dispose of
the individual network, only of the aggregated communication and mobility
network between antennas based on the mobile phone dataset (see methods
for details). We therefore assume that participants recruit people in the
same location at a constant rate γ. Additionally, protesters recruit people
in other locations at a rate proportional to Λij . Taking this approach, we
arrive at the dynamical system

ṁj =

[
β
∑
i

Λij
mi

ni
+ γ

mj

nj

]
(mj − nj). (4)

This type of model is known as a metapopulation model, because there are
both internal dynamics in each location as well as dynamics across loca-
tions [43]. In order to fit this model, the initial condition is set to a single
protester in the protest location. We solve the dynamics numerically for
a fixed time t = 1 since alternative times simply correspond to a rescaling
of the parameters β and γ. The epidemic model provides quite a good fit
(see Fig. 3(i)–(l)), so that indeed a diffusion process might take place on the
network. The best fit (R2 ≈ 0.66) is provided by a column stochastic matrix

of the number of trips Λij =
wtrips
ij∑
k w

trips
kj

. The column stochastic normalization

implies that the total rate at which locations are recruited
∑

i Λij = 1 is
constant. The rate of spreading across locations β ≈ 3 is about one and a
half times larger than the rate within a location γ ≈ 2. This is somewhat
surprising, as we could expect diffusion in the own neighbourhood to be
more effective, which apparently is not the case. Mobility is more predictive
of participation than communication in this model. This suggests face-to-
face contacts are more important for the diffusion than communication over
the phone.

In conclusion, the effect of the distance on participation may partly be
explained by the social network, either through central recruitment or fur-
ther diffusion. Nonetheless, the direct contact model provides a better fit
overall, making it a better model of participation than the diffusion model.
Possibly, this is due to the fact that we only work with an aggregated net-
work, rather than the individual network. However, it is difficult to ascertain
whether the decay of participation over distance is entirely due to network
effects.
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2.2.3. Combining distance and network effects

We want to analyse whether the social network can explain all decay of
participation over distance, or whether still some direct effect of distance is
left. We therefore incorporate distance also in the network model. In partic-
ular, the direct contact model overestimates participation at large distances
(see Fig. 3(e)). It therefore makes sense to hypothesise that the probability
to participate is not constant, but rather depends on the distance also, so
that we arrive at

m̂j = qnβj (1− (1− pe−γdij )Λij ), (5)

using exponential decay. We find that this model does an excellent job (R2 ≈
0.71 using the number of calls), whereas a powerlaw decay actually worsens
the fit (Fig. 3(i)–(l)). This suggests that either long-distance calls are less
effective at recruiting people, or that distance is an obstacle, preventing
people from going to the protest. The scaling with the number of users is
now consistently superlinear for both communication and mobility (β ≈ 1.1),
suggesting more populous places are more likely to engage in protests. The
distance at which the probability is roughly halved, is about log(2)/γ ≈ 9 km
for both the number of calls and number of trips, while for the duration, this
half-distance is about 4 km. As an alternative, we also tested an intervening
recruitment model, where nearby users would be called before more distant
users, but this model did very poorly. This suggests that distance still acts
as an obstacle to participation, even when controlled for network effects.

3. Conclusion

Although much is known about protesters, their geographical origins
were still unclear. We here find that distance has a major impact on par-
ticipation, and that most participants have rather local origins. A simple
gravity model already fits the data well. A model based on intervening op-
portunities did considerably worse. This is consistent with distance acting
as an obstacle to participation.

Protesters are usually already acquainted with people in the movement
prior to the protest [7]. Since social networks also exhibit spatial pat-
terns [14, 15], this could be an explanation of how participation drops over
distance. We indeed find that the social network is predictive of participa-
tion. Interestingly, face-to-face contact seems more important for further
diffusion of participation, whereas telephone communication works better in
a model of central recruitment by the organisers. This is consistent with
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earlier studies, where going from door to door, talking to people face-to-
face, has a larger effect than contacting people over the phone, by e-mail or
through the post [44].

However, the social network only explains part of the decay of participa-
tion over distance. Even after controlling for the contact intensity between
two regions, there is still an effect of distance. In particular, the probability
to participate seems to decay exponentially, with a radius of roughly 9 km to
halve the probability to participate. This again suggests that distance func-
tions as an obstacle for participation. Alternatively, this could be because
long-distance recruitment is less effective.

Hence, if network data on interaction between locations is available, the
direct contact model with exponential decay over distance would be recom-
mended (using any interaction measure). That model provides the best fit
overall, and provides the best fit for 22 of the 39 protests. If available data
is limited to populations at locations and the distances between locations,
only two models are possibly suitable: the gravity model and the intervening
recruitment model. The latter does particularly badly, and the recommend
model is then the gravity model with powerlaw decay.

Our analysis suggests that participation is affected by three main factors:
(1) social network; (2) geography; (3) recruitment potential. These three
factors relate to each other in a specific way, quite different from a linear
(logistic) regression. The models we use should be a step forward from lin-
earity in understanding how people are recruited for protests. Nonetheless,
these models are quite rudimentary, and should serve as a starting point for
integrating other effects. How these various effects integrate into the model
exactly should be explored further. Different phenomena may affect these
three main factors in different ways. For example, it is possible that relative
deprivation [45] and socio-economic factors play a role in the recruitment
potential, but otherwise don’t affect the social network or geography. Sim-
ilarly, some factors may affect the distance impedance, but not affect the
recruitment potential directly, such as city limits, transport infrastructure
or natural barriers. Resources may be mobilized [46] to contact people more
effectively, altering the impact of the network, or to provide transportation,
altering the geographic impact. But those resources do not necessarily in-
crease the recruitment potential itself. This has important consequences for
the recruitment process. Different choices may have different consequences
for participation. Our results may help guide such choices.

Still, we must be careful in interpreting our results. Perhaps we measure
more the (unusual) presence of people at a certain location (which might be
closely related to mobility) and not protest participation as such. Therefore,
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future research should compare protests to other types of events. The cur-
rent study only uses aggregated data. Although protest participation seems
to diffuse over the network, we cannot assess whether it diffuses through
individual contacts or whether it is simply a reflection of the overall inter-
action between two location. Access to the individual network data would
make it possible to study this in greater detail. There are other possible
models of diffusion, such as cascading models [47] or threshold models [48],
but testing them warrants individual data. We could then also analyse the
interaction of mobility and communication better.

Using mobile phone data may introduce a bias towards those owning and
using a mobile phone. Perhaps only wealthier people own phones, who tend
to live more in urban areas, so that we underestimate participation from
rural areas. Similarly, antenna density may bias the results as rural areas
have larger distances between nearby antennas. People attending a nearby
event may thus be estimated to live further away in rural areas than in urban
areas. Moreover, we will miss people that have not communicated during
the protest, or that used a different nearby antenna for communication.
Similarly, we may possibly identify some people as participants while they
are merely spectators. Finally, protests are not necessarily confined to a
single location, and more complex mass movements are not captured by our
current approach. It would therefore be good if these spatial patterns would
be corroborated through other approaches such as social media [31, 32] and
traditional approaches (e.g. surveys).
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Appendix A. Methods

Appendix A.1. Data

Our data consist of anonymised call detail records (CDRs) obtained from
a telecom operator from a single undisclosed African country covering a
single year somewhere in the last decade. Each CDR included in the dataset
details the user who made the call, the date and time of the call and what
antenna was used for the call. However, we do not know the recipient of
the call, nor what receiving antenna was used. The approximate location
of the antenna is provided to us, thus supplying the necessary geographic
information. In addition, we have information on an aggregate level for pairs
of antennas. For each pair of antennas, we know the number of calls and
the total duration of the calls between them. Based on the CDR level data
we estimate the number of trips between two antennas.

We combine this mobile phone data set with data from the Armed Con-
flict Location & Event Data (ACLED) project4 [34]. This project collects
information from various media and (NGO) reports and manually codes
events. ACLED provides information on the time and location of events.
Unfortunately the timing provided by ACLED is only accurate to the day,
so that we cannot use more precise information for determining the presence
of users. Similarly, the spatial resolution of the ACLED data depends on

4http://www.acleddata.com/
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the information available from the source. ACLED does provide as accu-
rate localisations as possible, usually at the level of a (part of a) city. They
report the accuracy of this coding and provide exact latitude and longitude
coordinates for each event. All 39 protest events studied here have been ge-
olocated at the highest precision level. Nonetheless, this limited spatial and
temporal resolution may distort some of the results, and more accurate re-
sults may be expected with a more precise coding. Because of the sensitivity
of the topic, we do not disclose any information pertaining to the location
or timing of the protests to prevent any possible misuse of our results.

Appendix A.2. Mobile phone data processing

The most frequently used antenna indicated the origin of the partici-
pants. The population, i.e. the number of users, at a certain location is
estimated by looking at the most frequently accessed antenna by a user,
which we denote by au. We then simply count how many users have a par-
ticular antenna as their most frequent antenna. This provides the number
of users at antenna i as

ni = |{u | au = i}|. (A.1)

We estimate whether somebody is a participant by looking whether (s)he
was at the particular location at a particular date, but not often on any other
date (taking into account the difference between weekends and weekdays).
More formally, let us denote by cuj(t) the number of calls user u had during
date t at location j for some protest. We similarly calculate µuj = 〈cuj〉
the average number of calls (where the average is taken over time) and the

standard deviation σuj =
√
〈c2
uj〉 − 〈cuj〉2. For each user we calculate a z-

score as zuj =
cuj(t)−µuj

σuj
. We assume that user u participated to the event if

z is higher than a critical threshold zc, and we call such a user a participant.
For the results in the main text we used zc = 1.96, which corresponds to
a 0.0025 one-tailed probability in a standard Gaussian distribution. The
number of participants coming from antenna i is calculated as the number
of users that have antenna i as their most frequent antenna, while they also
had a higher z-score than the cut-off:

mi = |{u | au = i, zuj > zc}|. (A.2)

We also tested zc = 1.64 and zc = 2.33 which corresponds to a 0.05 and 0.001
one-tailed probability. In general, a higher cut-off leads to slightly lower fits
overall, but the results remain qualitatively the same. To give some idea,
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for the largest protest, we detected respectively 1148, 1105 and 1010 for a
cut-off of zc = 1.64, zc = 1.96 and zc = 2.33. The average participation
decreased from about 〈mj〉 ≈ 356 for zc = 1.64 to 〈mj〉 ≈ 340 for zc = 1.96
and then to 〈mj〉 ≈ 314 for zc = 2.33. Overall, the results are quite robust
with respect to this parameter.

We do the above calculations for the number of participants and the num-
ber of users for each event separately. In addition, we calculate the number
of trips between location i and j based on the observed calls. Whenever we
first observe a mobile phone in location i and then in location j we record
that as a trip from location i to j. This only makes sense for movements
between different antennas, so that the rate of internal movement remains
unknown. We count the total number of trips over the whole period for each
pair of antennas.

Appendix A.3. Model fitting

Although we report R2 values to provide some idea of fit, it is a flawed
measure, in particular for model selection. We therefore corroborate our
findings using the root mean square error (RMSE) and Akaike information
criterion (AIC) which is based on information theoretical principles [49].
We use non-linear least-squares to estimate the model parameters, which
assumes normally distributed errors εj = mj − m̂j ∼ N (0, σ2) with zero
mean and variance σ2. We minimize the sum of squared errors

∑
j ε

2
j using

Levenberg-Marquardt, but if this does not converge we resort to Nelder-
Mead. The RMSE is defined as

σ =
√
〈ε2〉 =

√
1

r

∑
j

ε2j (A.3)

where r is the number of locations. We can define AIC as

AIC = r log σ2 + 2(k + 1) (A.4)

where k is the number of parameters in the model [49]. Better models
provide lower RMSE and lower AIC. For assessing the overall performance
of a model we calculated the AIC over all protests taken together. Since the
AIC has no absolute meaning, we only provide relative differences ∆ AICq =
AICq −mins AICs for model q. It is customary to also provide AIC weights,
which are proportional to exp−∆ AICq /2 (normalised to sum to 1), but
∆ AICq is too large for the total AIC. We do provide the average AIC weights
over all protests individually.
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All calculations were done in python 2.7 with numpy, scipy, pandas and
igraph packages. The preparation of the data is done using a combina-
tion of gawk, sort and python. Plotting was done using matplotlib and
pgfplots.

Appendix A.3.1. Models

Gravity model The gravity model commonly also uses various distance
decay functions. In our case, the more general formulation is

m̂j = Z
nβj

f(dij)
, (A.5)

where f is one of the following distance decay functions

f(dij) =


eθdij Exponential

(dij + δ)γ Powerlaw

(dij + δ)γeθdij Powerlaw w cut-off

. (A.6)

Intervening recruiment For the intervening recruitment model in equa-
tion (2) we used an exponential version. We did this to increase the numer-
ical stability to estimate the probability φ = − log(1− p). This leads to the
(otherwise equivalent) formulation

m̂j = Z(e−φ(ni+nij) − e−φ(ni+nj+nij)). (A.7)

We also included two simplistic models that may serve as a baseline
comparison. The first model simply assumes every location is equally likely
to participate in the protest, so that mi = Znβi , which we call the uniform
model. The second model only takes into account the distance so that
mi = Z/f(dij) with a powerlaw decay f(dij) = (dij + δ)β, which we term
the distance model.
Direct contact For the distance decay in the direct contact model we also
use Eq. A.6.
SI model The dynamical system of epidemic spreading needs to be solved
numerically. We fix the initial condition at t = 0 to a single protester in
the protest location and the time of the protest at t = 1. The fixing of the
time is without loss of generality, since any other t would simply imply a
rescaling of the parameters β and γ.
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Appendix A.3.2. Model of the network

We also modelled the number of calls wcalls
ij , the duration of the calls

wduration
ij and the number of trips between two location wtrips

ij . The overview

of the fitting to the number of calls wcalls
ij , the duration wduration

ij and the

number of trips wtrips
ij is provided in Table A.3.

We test both the traditional gravity model and the recently proposed
radiation model. The usual form of the gravity model is

ŵij = Z
nαi n

β
j

f(dij)
(A.8)

where f(dij) is a distance decay function as in equation (A.6). The radiation
model [26] is specified as

ŵij = Zwi
ninj

(ni + nij)(ni + nj + nij)
, (A.9)

where wi =
∑

j wij is the total out-strength of node i.
We also tested an alternative specification where there would be a home

advantage, which consists of artificially increasing the number of people at
home, so that

ŵij = Zwi
(ni + h)nj

(ni + h+ nij)(ni + h+ nj + nij)
. (A.10)

Although this model improved the fit of the radiation model somewhat, it
still does worse than the gravity model. This clearly favours the gravity
model over the radiation model, as was also found by others [50].
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Number of calls Duration Number of trips
∆ AIC RMSE ∆ AIC RMSE ∆ AIC RMSE

Gravity Model
Exponential 188 764 12 600 300 570 559 647 38 451 27 786
Powerlaw 3 060 11 999 10 123 518 517 467 26 464
Powerlaw with cutoff 0 11 990 0 517 139 0 26 448

Radiation Model
Original 584 081 13 979 630 893 610 404 129 471 31 231
Home Advantage 502 585 13 683 453 136 582 544 114 880 30 651

Table A.3: Network fit. Fit of models to network variables. The gravity model with
powerlaw (with cutoff) decay is clearly favoured for all variables. The cutoff goes in the
wrong direction however (leading to an exponential increase rather than decrease), so that
the powerlaw remains preferable.

24



100 101 102 103

10−2

100

Distance (km) dij

P
ar
ti
ci
p
a
n
ts

m
j

101 102 103
10−6

10−2

102

Users nj

P
ar
ti
ci
p
a
n
ts

m
j

100 101 102
100

101

102

Participants (data)

P
ar
ti
ci
p
a
n
ts

(m
o
d
el
)

Gravity model

101 102

Participants (data)

Intervening opportunities

100 101 102 103

10−2

100

Distance (km) dij

P
ar
ti
ci
p
a
n
ts

m
j

101 102 103
10−6

10−2

102

Users nj

P
ar
ti
ci
p
a
n
ts

m
j

100 101 102
100

101

102

Participants (data)
P
ar
ti
ci
p
a
n
ts

(m
o
d
el
)

Direct contact

101 102

Participants (data)

Epidemic model

100 101 102 103

10−2

100

Distance (km) dij

P
ar
ti
ci
p
a
n
ts

m
j

101 102 103
10−6

10−2

102

Users nj

P
ar
ti
ci
p
a
n
ts

m
j

100 101 102
100

101

102

Participants (data)

P
ar
ti
ci
p
a
n
ts

(m
o
d
el
)

Exponential decay

101 102

Participants (data)

Powerlaw decay

Data Gravity model Intervening opportunities

Data Direct contact Epidemic model

Data Exponential decay Powerlaw decay

a b c d

e f g h

i j k l

Figure 3: Model fit. The fit of the geographical models is displayed in the first row,
(a)–(d), the fit of the network models in the second row, (e)–(h), and the fit of the direct
contact model with distance dependence in the third row, (i)–(l). In the first column, (a),
(e) and (i), we show how the number of participants mj depend on the distance dij and
in the second column (b), (f) and (j) we show the dependence on the number of users nj .
How well the number of participants is predicted by the various models is displayed in the
third and fourth column, (c), (g), and (k) and (d), (h) and (l) respectively. Error bars
indicate standard errors of the mean. Clearly, protest participation is affected by distance,
and this is well fit by a gravity model (R2 ≈ 0.63). The intervening opportunities theory
does reasonably well (R2 ≈ 0.55) but less well than the gravity model. The geographical
dependency can be partly explained by the social network. Assuming the organisers
recruit from the protest location and contact people directly over the phone we arrive at
the direct contact model, which provides a good fit to the data (R2 ≈ 0.68). Assuming
that the probability in the direct contact model depends on distance, we find that an
exponential decay does best (R2 ≈ 0.71) whereas a powerlaw decay does quite poorly
(R2 ≈ 0.51), both using the number of calls. If participants themselves also recruit people,
we obtain an epidemic model which predicts participation also quite well (R2 ≈ 0.66).
However, whereas phone calls perform best in the direct contact model, mobility is better
in the epidemic model. This suggests that face-to-face contact may be more important
for spreading participation.
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Figure 4: Social network fit. Social networks generally depend on distance as well.
We show the distance dependency in the first row, (a)–(c), and the dependence on the
number of users in the second row, (d)–(f), for respectively the number of calls wcalls

ij

(first column), the duration of the calls wduration
ij (second column) and the trips wtrips

ij

(third column). The gravity model provides quite a good fit (R2 ≈ 0.67, R2 ≈ 0.60 and

R2 ≈ 0.66 respectively). They all roughly scale as wij ∼
√
ninj

(dij+δ)γ
, with γ ≈ 1.18 for

the number of calls and the number of trips, while the duration decays much slower with
γ ≈ 0.86. Since social networks are important for recruiting people, it is possible that the
origins of protesters do not depend on distance as such, but can rather be explained by
the social network.
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