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“Popularity is the one insult I have never suffered.”
— Oscar Wilde

Abstract

This thesis considers a model for popularity based on a ‘rich-get-richer’
effect. Basically, popular items tend to become increasingly popular.
However, quality of items also plays a role in popularity. The model
thus incorporates both a ‘rich-get-richer’ as well as a ‘good-get-richer’ ef-
fect. The balance between these two effects is interpreted as the amount
of social influence. Formal analysis of the model suggests that the dis-
tribution of popularity becomes more unequal and more uncertain with
rising social influence. Higher quality has a dual role: it results in a higher
average popularity, but increases the uncertainty as well. The model is
tested against data from the YouTube market and the Hollywood movie
industry. Comparing the results for these two markets suggests that social
influence is higher for on-line markets than for traditional markets. When
markets go on-line, producers should be prepared to take the increase in
risk into account. Some books might break all records, while others re-
main on the shelf, and it becomes harder to predict which books that will
be.

Keywords: Social Influence, Popularity Distribution, Power law Dis-
tribution, Cultural Market, YouTube, Hollywood, On-line Market, Tradi-
tional Market
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Preface

Sociology and mathematics is a combination rarely seen. Recently, however, an
increasing number of scientists from other fields, such as biology and physics,
are using their mathematical modelling experience to conduct sociological in-
vestigations, in particular in the field of social networks (Barabasi 2003). There
are also some sociologist who use mathematical modelling techniques (Edling
2002). Yet, mathematics is not a common phenomena in the social sciences.

Mathematics is often seen as ‘too’ abstract: how can any social phenomenon
be captured in equations? It does not seem possible to capture things such
as nationalism or ethnicity in mathematical symbols, especially the emotions
aroused by such concepts. To understand what nationalism does to a person,
you don’t need mathematics, you need a detailed in-depth account of it. Or
maybe, you have to experience it for yourself.

The power of mathematics lies not with emotions or descriptions in that way.
Mathematics does not make you aware of what nationalism does to a person, nor
does it tell you what is important and what not. What processes are important
for the emergence of nationalism will not be revealed by mathematics. Whether
to include economical developments, technological advancements or changing
ideologies to explain nationalism cannot be decided by mathematics. However,
mathematics can provide other insights.

In sociology hypotheses are not always deduced clearly from theory, since
most deductions in sociology are done verbally. Verbal reasoning leaves the de-
duced hypotheses ambiguous and open for debate. The power of mathematics
lies with the deduction of hypotheses from theory. Seeing how various prin-
ciples, causes and effects interplay to produce outcomes is difficult, especially
when multiple causes and feedback loops are present. Through mathematical
analysis this caveat of verbal reasoning can be addressed. It provides a grounded,
well established framework wherein theories can be modelled carefully and thor-
oughly. In sum, mathematics is no substitute for theoretical reasoning as verbal
reasoning is no substitute for mathematical analysis. Several authors, such as
McElreath and Boyd (2007) and Turchin (2003) have made similar arguments.

Let me illustrate this point by considering the geopolitical theory of Randall
Collins. He predicted in 1978 the collapse of the Soviet Union, based on a geopo-
litical model of state-breakdown (Collins 1999). His model can be summarised
as following. A good geopolitical position (‘marchland’ advantage) leads to a
higher success rate in war. A higher success rate in war leads to an increase in
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Figure 1: Illustration of the geopolitical model of state breakdown of Collins. After Collins
(1999:figure 1).

territorial size. The increase in size has several consequences. It increases the
logistical loads (the resources spent to control the empire), changes its geopo-
litical position (usually worsens it, as the state now comes in contact with more
powerful neighbours) but also increases the resources with which wars can be
won. These resources increase the success rate in war again, but the logistical
loads decrease the success rate. This model is illustrated in figure 1.

Although this model is stated quite clearly, it is rather difficult to draw
clear conclusions from it. When will a state break down? Does the geopolitical
model of state breakdown predict cyclic Great Powers? Or will it lead towards
a stationary configuration of states? Maybe it will predict the emergence of a
world state? The answers to these questions are not easy to infer verbally from
the model.

More specifically, how do the various variables interact? What effect is
stronger than the other? Can we pick any one state at random, and determine
whether it is about to expand, collapse or remain stable? More problematic:
what exactly constitutes a falsification of the model? Can we always argue that
a specific case is indeed ‘explained’ by the model? And how would we compare
it to rival models of state-breakdown?

For example, Goldstone (1993) focuses on the strain that population growth
puts on the state, while Skocpol (1979) suggests that defeat in war in pivotal
in state breakdowns. In the French Revolution for example, we see various
suggested principles at work. There was the Seven Year’s War (1756-1763)
in which France experienced serious territorial losses and incurred fiscal prob-
lems. But population growth also led to inflating wheat prices which resulted
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in widespread famine and food revolts. What model gives a more realistic pic-
ture? Using post-hoc arguments, it is difficult to asses in any specific way, which
model better approximates reality. If we only provide arguments post-hoc, we
will only be able to try and fit history into the model.

Of course it should be the other way round. We should try to fit the model
to history; not to fit history to the model. We should not try to ‘explain’ the
English Civil War of 1642-1651 or ‘explain’ the collapse of the Soviet Union in
1990 with hindsight. Besides the fact that we may ignore many instances at
which states did not breakdown in this way—more formally known as ‘sampling
on the dependent variable’—hindsight blurs clear vision.

The question is: could we have predicted the English Civil War starting in
1642, using only data from before 16427 We should put on a historical veil of
ignorance so to speak. Blind to whatever may happen after a certain date, could
we still make correct predictions?

Given these problems more specific to historical sociology, one rather gen-
eral problem remains: in what way can we infer actual predictions from our
model? How are assumptions of the processes that take place translated into
consequences? It is here that mathematics comes into play, so that we may see
the consequences more vividly, and thus draw conclusions more rigorously.

This is largely in congruence with Collins’ own approach:

“Can successful historical predictions be made? Obviously they can.
But it is important to distinguish between a sociological prediction
and a guess or wishful thinking. A valid prediction requires two
things. First, the prediction must be based on a theory that ex-
plains the conditions under which various things happen or do not
happen—that is, a model that culminates in if-then statements. This
is a more stringent standard of theory than what sociologists gen-
erally mean by the term. It is not a category scheme, or a meta-
theory, or even a process model, which lacks observable if-then con-
sequences. Second there must be empirical information about the
starting points, the conditions at the beginning of the if-then state-
ment.” (Collins 1999:57)

And Collins also recognises the need for a more explicit formulation of theories:

“Theory usually enunciates general tendencies: for example, rulers
require legitimacy, conflict produces solidarity, a military-industrial
complex promotes war. Each proposition stands alone as a ceteris
paribus generalization. Deductions about the behavior of the sys-
tems described by such statements are often far from obvious for
a variety of reasons. Most important are multiple causes and feed-
back processes among them. Even in very simple theoretical models,
there can be unexpected outcomes. Positive loops accelerate basic
processes and bring some of them to ceilings at which they rest; neg-
ative feedback provides counteracting forces, which sometimes lead

vii



to a stable equilibrium, sometimes to oscillation, and sometimes to
chaos.

When a theory is formulated verbally, such as Weber’s or Simmel’s
classic statements about conflict, these alternatives are left open. We
do not know what is implied in a theory as long as it is left on the
level of separate general principles and is abstracted out of time. One
way to overcome this ignorance is to perform experimental research
on such theories by means of computer simulation. This activity
is a discovery-making process in the sense that one does not really
understand what the theory is saying about the world until one has
experimented with it as a dynamic model” (Collins 1999:239)

Here, Collins argues for a simulation of various interacting processes, which
he thereafter indeed undertakes. Gilbert and Troitzsch (2005) are other propo-
nents of this ‘social simulation’. This is a solid step forward: it becomes more
apparent what the dynamics of the suggested model are. It has one drawback
however: understanding is limited to what initial conditions have been exper-
imented with. Although computing power has grown tremendously over the
past few decades, it is still limited. Hence, not all initial conditions can be
tried. Moreover, simulations are largely written in a non-standardised form,
and depend on specific implementations. We cannot ‘read’ simulations as we
can mathematics. It is therefore rather difficult to replicate simulations and
results from other scientists.

Through mathematical analysis, more definite results can be obtained. We
do not have to ‘try’ every single initial condition, since mathematical deductions
provide us with more clear-cut answers. The interaction and consequences of
various initial conditions can be made quite clear with mathematical analysis.
Furthermore, analytical results can be verified easily, since they can be mathe-
matically proven. Other scientists can therefore always replicate the results and
check the formal deductions.

Of course, some models are of such inherent complexity (including explicit
spatial dimensions for example), that simulation is the only way we can under-
stand its dynamics. Simulation provides a mechanism by which to understand
these more complex dynamics. But it should mainly be limited to exploratory
research or for intractable problems. Mathematical formalisation has clear ad-
vantages in comparison with simulation.

One such formalisation of Collins’ model is given by Turchin (2003). He also
promotes a more formal approach to historical sociology:

“In general, non-linear dynamical systems have a much wider spec-
trum of behaviors than could be imagined by informal reasoning.
(...) Thus, a formal mathematical apparatus is indispensable when
we wish to rigorously connect the set of assumptions about the sys-
tem to predictions about its dynamic behavior.” (Turchin 2003:4)

We will outline the approach Turchin used to formalise the theory of Collins.
His approach is that of dynamical systems, which is a quite well-defined concept.
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Within the body of sociological literature, this concept is usually interpreted as
some sort of interaction between various variables, which produces somehow
certain dynamics. But this does not cover the concept.

The concept of dynamics (usually) entail some form of temporal behaviour.
That is, over time resources are accumulated, populations grow, and territory
increases. The growth (or decline) of these variables are dependent on the actual
value of the variable. For example, suppose we have state A with a population
of 1,000 people and a state B with a population of 1 million people. With a
birth rate of 5% per year, state A would have 50 new-borns, and state B would
have 50,000 new-borns. So, the growth of a population (in absolute terms) is
dependent on the size of a population.

More formally, let the size of the population be given by P. The rate of
change of P over time will then be denote by P. A dot over a variable thus
signifies the rate of change of the variable, not the actual value of the variable.
We can then state that a population grows linearly with its size, or

P=rP.

It says here, that the rate of change of the population size is proportional to
the size of the population. The rate at which the population grows is denoted
by r. We might call r the growth rate. Such an equation is called a differential
equation.

Now lets say that we have a number of resources ). As the population
grows, resources become more depleted, so @ will decline. On the other hand,
the population will grow faster if resources are plenty, but slows down if they
become depleted. If we assume that resources are added at a constant base, we
might arrive at the following idea

P = aQP-bP,
Q = c—dQP.

Here, the population P grows relative to the number of resources and the popu-
lation at some rate a and shrinks at a rate b proportional to the population size.
The resources Q grow at a base rate of ¢, and are consumed by the population
at a proportional rate d. There are now two differential equations which are
coupled. With coupled, I mean that P and @ both influence each other.

We might wonder whether there is point where the system is in an equilib-
rium. If it is in equilibrium, we do not expect the population numbers or the
resources to change. In other words, we expect P =0 and Q = 0. Assuming
the first, we obtain

(@Q-b)P = 0,

suggesting that either the population size is zero, P = 0, or that (a@Q —b) =0.
Writing out the latter option gives @ = b/a. If we solve @ = 0 we obtain

c = dQP.

ix



Resources
]

Population Size

Figure 2: Illustration of the population and resource dynamics. The red dots represent the
initial conditions. At first, population growth is rather slow, but resources accu-
mulate over time, and the population starts to grow. As the population grows, the
resources decrease, and the population growth slows down. In the end, resources
are consumed by the population at a rate equal to the rate at which the resources
replenish. An indication of how resources and population size change for different
values is given by the small arrows. Darker arrows mean a larger change.

If we assume that P # 0 we can substitute @ = b/a, at which point the popu-
lation is in equilibrium. We then obtain

b
c = d-P,
a
ca
P = —.
db

So if P = ca/db and @ = b/a the system is in equilibrium. Since the resources
grow independently of the size of the population, it will always replenish. Hence,
if we start of with some non-zero population, the equilibrium is always reached.
This process is illustrated in figure 2

We can now define the concept of a dynamical system more specifically.
A dynamical system! consists of one or more (coupled) differential equations.
Should dynamical systems be of interest to the reader, Strogatz (2001) is a good
place to start.

Turchin uses this approach of dynamical systems to formalise the model of
Collins. He thus creates a differential equation, for which the basic relations
are given by the model of Collins as portrayed in figure 1. Let us review the
formalisation by Turchin briefly?.

1This definition is only a rather informal one; it is somewhat looser than definitions usually
provided in mathematical textbooks.

2Should it be of interest to the reader, the model of Collins is discussed on pages 16-28
in Turchin (2003).
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Figure 3: Rate of change A of the territory A for the model with logistical loads incorporated.
It can be seen that there are two equilibria, A} and A%, of which only the latter is
stable. Hence, for any initial condition between A} and A3 the territory will grow
until, restrained by logistical loads, it will slow down approaching the equilibrium

A3

Turchin defines A to be the area, or territory of a state. The territory is only
affected by the succes in war W. Turchin assumes the relationship to be linear,
and arrives at A = c1 W, where c; is some constant translating succes in war into
territory. Resources R are simply proportional to territory, or R = csA. The
succes in war is determined by the state’s own resources relative to the resources
of other states. Thus W = c3R — ¢4, where ¢4 is the constant indicating the
constant military force of opponents. Putting all this together gives us

A=cA—b,
where ¢ = cicocs and b = cieq. This is a simple linear model, which has an
equilibrium at A* = b/c. Below this equilibrium A*, the growth of the state is
negative, and hence it will decline. Above the equilibrium, growth is positive,
and hence the state will grow indefinitely. But the logistical loads have not yet

been incorporated.
The logistical loads have a negative effect on success in war W, and thereby

on the growth of the state. Turchin assumes that the projection of power declines
exponentially with the distance 7 from the center, or ="/, Since the distance
is related to the area as r ~ A2, this can be written as e~VA/h Since power is

proportional to the territory, we can incorporate this as:

A= cAe= VAN _y,
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This model is illustrated in figure 3. It can be seen that two equilibria A7
and A3 exist. For any initial condition below A7, the rate of change is negative,
and the state will decline. For any initial condition above A7, the state will grow
until it slows down and reaches the equilibrium A3. Should somehow the state
grow above that equilibrium, the logistical loads make sure the state declines
again, until it reaches the equilibrium A3. So equilibirum A7 is unstable and
equilibrium A% is stable.

The formalisation gives rise to some conclusions. Firstly, Collins’ model does
not seem to give an argument as to why states collapse. The negative feedback
from logistical loads does not produce a full collapse, but only sets an upper
limit to the size of a state. Secondly, the model leads to a stable equilibrium.
The model predicts a rather smooth trajectory towards an equilibrium. History
suggests that empires rise and fall however. Turchin shows that some adaptions
of the specific implementation of Collins’ postulates do not change the essence
of the conclusion: the model is incapable of generating cyclic behaviour, which
is not in congruence with the rise and fall of empires.

Turchin shows that other models—without relying on exogenous factors—
are capable of generating this behaviour. It allows for both state failures as well
as for boom-burst cycles of territory size. It is based somewhat on the work
of Goldstone (1993). The basic idea is this: populations prosper in peaceful
times, thus increasing the population size. As the state becomes more populous,
so does the elite, which gives rise to fiercer competition, and strains the state
fiscally. The competition and fiscal problems lead to conflict, which reduces the
population, which induces the beginning of another cycle. The actual model
considered is more complicated, but it conveys the general idea.

This example clearly shows that mathematics may prove useful for the social
sciences. The formalisation of the model illustrates that the conclusions that
are drawn can be quite contrary to what may have been deduced verbally. The
essential point of the model—that states collapse when the logistical burden
becomes too heavy—does not follow from the postulates described by Collins.
This does not mean that the processes discussed by Collins are invalid or in-
correct, it just implies that these processes by themselves do not lead to the
collapse of states.

To summarise, using mathematics it can be shown more clearly what conclu-
sions can, and what conclusions cannot be drawn. Through formal analysis we
may more vividly see the consequences of theoretical statements. Mathematics
provides a clear, well established framework for modelling social phenomena.
Because of the prominence of mathematics in other fields, many results and
techniques are available. We should take advantage of that, and use mathemat-
ics to advance the social sciences.
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Chapter 1

Introduction

1.1 General Idea

Why do some books, such as Harry Potter or The Da Vinci Code become popu-
lar, and why do others not? If someone publishes a magnificent book—evocative
characters, imaginative prose and a quivering plot—what are the odds of it be-
coming popular? And how does that contrast with a book of lesser quality? Of
course we might refer to the rich characters created by J.K. Rowling to explain
her success. But can we do the same for Dan Brown?

More generally, what does popularity look like? We all hear on the radio,
read in the newspaper or see on television how many copies of a book have been
sold, or that a movie has broken all records. But we never hear of books that
didn’t become so popular. How many books and movies actually achieve some
level of popularity? What are the chances of success?

These are questions which beg serious answers. Publishers in all sorts of
markets have to deal with it daily. Why has almost everyone read Harry Potter
or The Da Vinci Code? Is it because we all like them so much? Or is it just
that everyone else has read it, and then: why shouldn’t you? That is probably
the key to popularity: social influence.

Humans exchange more information than any other animal. They gossip,
they talk, they mimic and they imitate. This thesis discusses how mimicking
preferences for books, songs or movies lead to popularity. For example, suppose
someone, say Jane, has a preference for the song School by Supertramp. She
tells al her friends about it, some of whom may or may not decide to go and
listen to the song themselves. They, in their turn, tell their friends about the
song, and the process so replicates itself.

Now let’s evaluate this process a bit more in-depth. We start out with
Jane, and assume she tells a number of people, say n. Let’s assume, for sake
of argument, that there is some fixed probability p that a friend of Jane, upon
hearing from her, will go and listen to the song. So, after Jane has spoken to
those n people, there will be about 1 + np people (including Jane herself) who
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14 CHAPTER 1. INTRODUCTION

will have listened to the song.

Now, since this process replicates itself, another iteration of this process is
done. We will assume that people not having listened to the song, will not
mention it to their peers. Now each of the np persons who have in fact listened
to the song will mention it to n other people. To keep it simple, friends of Jane
have no common friends (besides Jane of course). So after this second round of
music-gossip 1 + np + (np)? people have listened to the song.

This simple model would predict that after ¢ rounds of music-gossip, there

would be
t

> () = 1 (op)™

i=0 1—np

people who have listened to the song. So if there is less than one new listener
on average, or np < 1, there will only be a finite number of listeners. This is no
surprise, since on average, less than one person will be persuaded by his friend.
So, the process dies out if on average less than one person will be persuaded.
If at least one person is persuaded on average (np > 1), the total number of
listeners will tend to infinity.

We can look at the process another way. Suppose that k& people have already
heard the song. If each of them will tell n (distinct) friends, and each person
has a probability p of actually going to listen to it, we will probably gain about
knp listeners. Summing up, the probability of gaining additional listeners is
linearly dependent on the number of listeners it already has. This effect can be
summarised as the ‘rich-get-richer’ effect.

Of course, this process is not completely realistic. In the real world, a lot
of people have common friends, and we might hear from a dozen people that
this or that movie is “so great”, or “so much fun”. This changes the process.
Maybe hearing it from two friends has even more impact than twice the impact
of hearing it from only one. Moreover, hearing it from your best friend is quite
something different than hearing it from some classmate (unless of course, that
classmate happens to be your best friend).

These are indeed all kinds of complicating factors which deserve to be treated
in their own regard. My basic assumption here is very simple: popularity in-
creases the chances of becoming popular. In more complex systems, this as-
sumption will not be very realistic. As a first approximation however, it might
serve its purpose.

This central assumption allows us one big advantage. We don’t need to know
anything about the social network. All we care about is how much a song has
been listened to, a book has been sold, or a movie has been watched. This is a
big advantage because finding out about social networks in a robust manner is
a painstaking, time consuming and expensive process.

This assumption is the basis for the model I will develop here. We might call
this the ‘compounded’ approach, to offset it from an approach taking the social
network into account. More specifically I try to model the phenomenon that (in
the limit) an infinite number of people (large enough anyhow) can choose from
an ever growing market. At each time step, m items from the market will be
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picked by the population, I will speak of votes for those items. After this time
step a new item is introduced into the market without any votes. In addition,
each item has an associated ‘intrinsic quality’, which will partly be responsible
for attracting votes.

Markets such as these are easily found on the internet, of which YouTube' is
perhaps one of the most renowned examples. New videos are being uploaded to
YouTube each day, and the number of viewers are practically unlimited. I have
collected data on the number of views (votes in my terminology) for approx-
imately 200,000 movies from YouTube, including the currently all time most
viewed Fvolution of Dance, which for reasons unknown to me, some people find
hilarious. In addition I have recollected the data on the number of views about
a week later in order to see how many additional views the movies attracted in
the meantime.

The results of YouTube are compared with the results of mainstream Holly-
wood movies. Considering the amount of movies released each year, Hollywood
can be seen as a growing market as well. One of the differences for Hollywood
movies however, is that relatively much of the revenue is generated in the first
few weeks. This might set cinema apart from the YouTube market, where movies
from years ago still can be seen. Since millions of people go to the movies, the
population might be considered virtually unlimited.

I will discuss some previous works on social influence in the remainder of
this chapter. A formalisation of the model is given in chapter 2. T also discuss
the relevance of my model for generating networks, which has drawn quite some
attention over the past few years. In chapter 3 I will construct the methods for
both estimating parameters and testing my model. The empirical analysis—
based on data from the YouTube market and the Hollywood market—is done
in chapter 4. Finally, a summary of my main conclusions is given in chapter 5.
Additional material can be found in several appendices.

1.2 Cumulative Advantage

A ‘rich-get-richer’ effect was considered by Merton (1968). Merton describes
in his work how scientists are credited with their research. He finds that well-
known scientists are disproportionately more credited than their lesser known
peers. He terms this the Matthew effect, after the Gospel According to St.
Matthew:

“For unto every one that hath shall be given, and he shall have
abundance: but from him that hath not shall be taken away even
that which he hath.” (Merton 1968:3)

A more explicit formulation of such an effect was undertaken by Simon (1955)
and De Solla Price (1965; 1976). Price talks more explicitly of a ‘cumulative
advantage’, or as he puts is:

Thttp://www.youtube.com
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“The simplest expression of such a principle is to suppose that suc-
cesses fall equally on the head of all previous successes, so the fre-
quency of transitions from state n tot n + 1 will be proportional to
n.” (De Solla Price 1976:294)

My central assumption is similar to the principles put forth by Merton,
Simon and Price. Popular items tend to become even more popular. The dif-
ference however is that I do not assume that only popularity plays a role, but
that intrinsic quality also plays its part, which will become more apparent when
I discuss the model in chapter 2. The model of Price is a direct predecessor of
the model considered by Barabasi and Albert (1999), but they term the cumu-
lative advantage effect ‘preferential attachment’. I discuss that model briefly in
section 2.4.1.

The terms ‘Matthew effect’, ‘rich-get-richer’, ‘cumulative advantage’, ‘pref-
erential attachment’ all signify the same thing: popular items tend to become
more popular. My approach differs from previous models however, because
of the social influence parameter and inherent quality. It is not only popular
items that tend to become more popular: good items also tend to become more
popular.

We may wonder however, why there is such an effect. Why do we im-
itate peers? Is there some innate drive to imitate others? And if so, why
do we have such a drive? An interesting evolutionary argument is made by
Boyd and Richerson (1985), but I will not pursue this question further.

1.3 Social Influence on Networks

I try to model social influence from a compounded point of view. This contrasts
with models that try to capture influence and opinion dynamics on a network.
They assume, as I do, that people influence each other through relationships.
Instead of taking only some sort of average social influence, as I do with the
compounded approach, they try to model this behaviour more explicitly.

In general they start off with some network, where vertices have some initial
opinion or preference. Then, at each time step, the opinions and preferences
of vertices are updated. Most of the time this points the research in another
direction than that of mine. Preferences and opinions are usually formulated in
juxtaposition. You cannot be both Republican and Democratic, or pro-life and
pro-choice, or vote for Hillary Clinton as well as Barack Obama. So, the main
focus is usually on investigating segregation of opinions, or looking at conditions
by which a full consensus is reached.

This differs from the type of phenomena I wish to model. We usually don’t
have only one book in our bookcase, which we throw away if we buy a new
book, or view only one film in our lifetime. Moreover, it is irreversible. If we
have read a book, viewed a film or listened to some music, we cannot unread,
unview or unlisten it. On the other hand, we can change our opinion, or our
preference. We might change our taste in music, or our opinion on a movie, but
not the fact that we have listened to it or viewed it.
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1.3.1 Friedkin

Noah E. Friedkin has worked on the subject of social influence which resulted in
numerous publications (Friedkin 1991; 1993; 1998; 1999; 2001). Instead of look-
ing at dichotomous opinions or preferences, he analyses a model in which opinion
is a continuous variable. He assumes some network of (weighted) relationships.
Through these relationships, people are being influenced. The pressure being
exerted by peers is a weighted combination of their opinions (Friedkin 2001:171,
Friedkin 1991:1481, Friedkin 1999:860, Friedkin 1998:24).

More formally?, let W be an n x n row stochastic matrix of the weighted
relationships. So w;; is the weight given to the relationships between vertex
(actor) ¢ and j and , w;; = 1. Let A be a n x n diagonal matrix describing
how much of the influence is determined by the social network. Some amount
1 — ay; of the ‘opinion formation’ is done independently of others, while the
rest a;; is formed because of others. Friedkin analyses m opinions which are
described by the n x m matrix Y. Then, given initial opinions Y{ somehow
formed exogenously the opinions are updated in each step as

Yii1 = AWY; + (I — A)Yy,
where I is the identity matrix. This model attains an equilibrium at

Y* = AWY* 4 (I — A)Y,,
(I = AW)~H(I — A)Y,,

provided that (I — AW) is in fact invertible.

The equilibrium solution is the theoretical argument used by Friedkin to
support various centrality measures (Friedkin 1991). We can write (I — AW)~1
as > peo(AW)F, and with the observation that (AW)* gives the weighted in-
fluence running between each pair of vertices in k steps, this gives a measure of
how much influence is being asserted by each actor on the complete network,
which might be a good interpretation of centrality.

The use of a continuous variable for modelling opinion dynamics, is some-
thing which cannot be translated to my model easily. I am using a discrete
dichotomous analogy. Either you have viewed the movie, or you haven’t. But,
the general idea of how social influence is being exerted is similar to my idea.
However, a dichotomous preference cannot propagate through the network in
the model of Friedkin, since the preferences are continuous, which makes it less
relevant to us.

1.3.2 Cascading

Another model of social influence processes is considered by Watts (2002). The
basic idea is similar to my idea:

2This is the model being considered in Friedkin (1998) which gives the most general for-
mulation of the ‘Social Influence Network Theory’, as Friedkin terms his own theory.
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“When deciding which movie or restaurant to visit, we often have
little information with which to evaluate the alternatives, so fre-
quently we rely on the recommendation of friends, or simply pick
the movie or restaurant to which most people are going. (...) In all
these problems, therefore, regardless of the details, individual deci-
sion makers have an incentive to pay attention to the decisions of
others.” (Watts 2002:5767).

Watts analyses a model in which people® make binary choices, that is, we either
go to a restaurant or not, we either join a movement or we do not etc. .. This is
then restricted to a single issue. This is similar to the spreading of a preference
for a book, song or movie.

More specifically, Watts’ model is constructed as follows. We build a network
of n vertices having degree k with probability p; and mean degree z. Each vertex
can either be ‘on’ (having a preference for the issue) or ‘off’. Initially all vertices
are set to ‘off”, and we begin the process by setting one vertex (or more if we
like) to ‘on’. Each vertex has a threshold 0 < ¢ < 1, and if the fraction of
neighbours that are switched on exceeds the threshold ¢ the vertex will also be
switched on. In this way, the preference propagates through the network.

Watts researches the phenomena of ‘global cascades’, or the condition that
the complete network? is switched on. He finds for uniform random graphs®
and homogenous thresholds (meaning that each vertex has the same threshold)
that global cascades take place only in a specific region. For a certain threshold
¢* global cascades take place below a mean degree z*. The boundary z* for
which global cascades take place decreases if ¢* increases. This means that if a
network is densely connected, we need to have a lower threshold in order to let
the preference propagate throughout the network entirely.

Analysis suggest that if thresholds become more heterogeneous, the window
of obtaining a global cascade increases. Oddly, if the degree distribution becomes
more heterogeneous the window lessens.

Watts’ model suggests that the actual structure of the network plays an
important role in how the process unfolds itself. Depending on connectivity and
the threshold distribution, the results for how many vertices have actually been
switched on can vary widely. So, indeed this needs to be taken into account
when modelling social influence.

However, the main interest of Watts lies with describing how ‘hypes’ might
arise from a social influence model. He describes under what conditions a hype
is more likely. My interest however, does not lie with the hypes only. I also
would like to take the less successful items into account. The analysis of Watts
does show that ‘tipping point’ behaviour might arise from social influence.

3Watts extends the model to other entities, such as power houses which may or may not
fail. These are however mostly irrelevant for my discussion here.

4More specifically, the connected component, since some vertices might not be connected
to the initial vertices which have been switched on.

5In a uniform random graph each edge has an equal probability z/n of appearing, leading
to a Poisson probability distribution p; = efzzk/k!.



Chapter 2

Formalisation

2.1 Model

Below I describe the model I developed. Two distributions are my main concern:
the ‘uncertainty’ distribution and the ‘popularity’ distribution. The uncertainty
distribution will indicate what the probability is of receiving a specific number
of votes for items with a given quality. The popularity distribution gives the
probability that any random item has a specific number of votes.

Each item has an associated quality ¢; > 0 drawn from a quality distribution
p(¢) with an average quality of u and variance o. We start out with s items,
having m votes each and an average quality. The number of votes obtained by
item 4 is denoted by k;. At each time a new item will be introduced without
any votes, while there will be m votes cast between two successively introduced
items. The probability that an item will obtain another vote is dependent on
its quality and on the number of votes it already received. The balance between
attracting votes because of its quality and because of the number of votes is
thought of as the ‘social influence’, and is denoted by 0 < A < 1. An overview
of the parameters used in the model is found in table 2.1. We will use the
so-called continuum approach, which assumes that k is continuous, and not
discrete, after Albert and Barabasi (2002). The derivation of the results follows
largely their approach.

The probability that item ¢ obtains another vote is

®i ks

mL=01-X +A . 2.1
( )Zl PR Sy (2.1)
The rate at which item ¢ will attract votes can be given by
Ok; i ki
—=m|(1-=A + A , 2.2
Er ( )Zl P S (2.2)

since m votes will be cast at each time.

19
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Quality

Quality Distribution

Average quality of p

Variance of the quality

Number of votes

Social Influence

Number of votes per newly introduced item

IS >FTATD O

Table 2.1: Overview of the general set of parameters for the model.

Now ), k; is simply the total number of votes cast, plus the initial votes. So
this sums to (¢t + s)m, which we approximate by tm for ¢ > s. On average the
quality of items is u. So, after a long enough period, we can expect the average
quality of all items to be about i, or ), ¢ = (t+s)u, which we approximate by
tu for t > s. Thee rate at which item ¢ will attract votes can then be written
as

or
Oki me; k;
= [(1 N +)\t] (2.3)

Since new items are introduced at ¢; without any votes k;(¢;) = 0. The solution
of the differential equation is then

)\ .
() = l<i) _ 1] (1- A)”;il, (2.4)

t;

where 0 < A < 1, t; > 0 and p > 0. Details of this derivation are given in
appendix C. This equation shows that the number of votes an item gets grows
with ¢, as expected. It also allows for items later introduced to attract votes at
a higher rate, as long as they have a higher quality.

This entails both a ‘rich-get-richer’ and a ‘good-get-richer’ effect. So, for
items having a similar quality, older items will have attracted more votes than
younger items. But, good items that are introduced at a later time can still
increase the number of votes they receive above the number of votes older items
have. An illustration of this can be seen in figure 2.1.

We would like to find out what the distribution of votes after a while looks
like. More specifically, let us examine items having a specific quality ¢ after
time ¢t. Let us draw a random item from those items having quality ¢ after
time ¢, and denote the number of votes of that item by X, 4 and the time of
introduction by 7 4. We wish to examine the probability P(X¢ 4 < k) for some
k.

If items have the same quality ¢ they all attract votes at the same rate.
The only reason that different items have different number of votes is that they
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Figure 2.1: Growth trend of two different items. The first one is introduced at t; = 1 and the
second at t; = 50. The quality of the latter however is 10 times as high as that of
the former. Social influence is set to A = 0.5 and m = 100 votes are cast before
new items are introduced.

were introduced at different times. So, using equation 2.4, we can write the
probability as

P(Xyp<k)=P (Tt>¢ > (k/\::_—(l)\)_ﬂ”;q)ﬁmgb) X t) .

We started out with s items, so there is a probability of s/(t + s) that an
item was one of those first items. Since we introduce a new item at each ‘time
step’, 7¢,4 is uniformly distributed with 1/(¢+s) (proportional to the probability
at which items with quality ¢ appear) hence P(1,4 < ¢) =1 —¢/(t + s). Using
this we can write

(1 - Nmg > t

P(Xpp < k) =1—
(Xep <) <I~c)\u+(1—)\)m¢ t+s

which we differentiate with respect to k, take the limit for £ — oo and obtain

P(Xy = k) = p((1 — Nme)3 (khp+ (1 - Nme) %) (2.5)
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Figure 2.2: Uncertainty distribution for various values of A = (0,0.1,0.5,0.99). Quality is

taken to be the average quality, while we assume that 100 votes are cast (m = 100)
before a new item is introduced.

where X is the number of votes of a random item after a long enough time
having a specific quality ¢. Details are again given in appendix C. This distri-
bution is then the uncertainty distribution. It shows how the number of votes
may vary for items having a certain quality.

Two special cases need to be derived in another way, since the above analysis
was for 0 < A < 1 only. For A = 0 the uncertainty distribution follows an ex-
ponential distribution with exponent qus If A =1 the uncertainty distribution
follows a power law distribution! with an exponent of 2. The distribution for
various levels of social influence can be seen in figure 2.2.

Some properties of this distribution can be calculated relatively straightfor-
ward. The expected number of votes for 0 < A < 1 is given by

— mo
k= , 2.6
. (2.6)
and the variance for 0 < A\ < 1/2 is given by
2 42 2
me ___k (2.7)
(I=2XN)p2 1-2X

LOf course, if items will be introduced without any initial votes, the process never gets
started, so they need to be introduced with some votes in order to get the process started.
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For A\ > 1/2 the variance is infinite. For details on the derivation see appendix C.
The expected number of votes is independent of social influence. So social
influence does not affect the number of total votes cast. It only affects the way
the number of votes are distributed among items with a certain quality. More
specifically, the variance increases with A, reaching infinity for A > 1/2. Higher
social influence thus makes it harder to predict whether an item will become
popular or not. The variance is actually the mean number of votes squared
divided by 1 — 2\. In other words, a higher mean implies higher variance.

Furthermore, the expected number of votes increases with quality. Items
with a higher quality will gain more votes than items with a lower quality.
More surprisingly, the variance also increases with quality. This means that
it is harder for items with a higher quality to predict how many votes it will
attract, even though the expected number of votes is higher.

Finally, the number of votes cast m between two successively introduced
items increase both the average popularity and the variance. A market in which
items are introduced rather quickly (i.e. few votes cast per introduced item, or
a low m) results in a lower variance, while a more static market (i.e. more votes
cast per introduced item or a high m) results in a higher variance. This is the
result of the longer time that social influence can play a role in a more static
market. If m is high, it provides more time for the existing items to attract
votes biased by social influence.

The increasing uncertainty with a higher social influence and a higher quality
is confirmed empirically by Salganik et al. (2006). They performed an on-line
experiment, where visitors of their webpage were able to listen and download
various songs. Each visitor would be assigned to one of three different settings.
In the first (independent) setting, no figures on the number of downloads were
provided, and songs were displayed in random order (i.e. no, or little, social
influence). In the second (social influence) setting, songs were still displayed
in random order, but this time the download count was provided. In the third
setting, not only were the download counts provided, but the songs were sorted
in decreasing order of popularity.

They found that uncertainty (unpredictability? in their terms) increased
from setting one through three. In other words, a higher social influence in-
creases the variance. They also suggest that uncertainty varies with quality:

“In general the ‘best’ songs never do so badly, and the ‘worst’ songs
never do extremely well, but almost any other result is possible. Un-
predictability also varies with quality—measured in terms of market
share, the ‘best’ songs are the most unpredictable, whereas when
measured in terms of rank, intermediate songs are the most unpre-

dictable.” (Salganik et al. 2006:855)

So my model may serve as a theoretical basis for the findings of Salganik et al.

2Unpredictability is taken to be the difference in market shares across multiple experiments
in the same setting.
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2.2 Popularity Distribution

As the probability distribution for items with a given quality—the uncertainty
distribution—is available, we can turn to the probability distribution for all
items—the popularity distribution. The uncertainty distribution was for items
having a specific quality ¢, hence is proportional to p(¢). So, let X denote the
number of votes of a random item after a long enough time. The probability
of obtaining a number of votes k, P(X = k) which we shorten as P(k), can be
written as

¢n]ax
B = [ peIP(Xs = k), (28)
which means that we take the average of the uncertainty distribution over each
level of quality ¢.

The mean uncertainty for items with a given quality ¢ is m¢/u. The mean
popularity is thus given by the integral over the quality distribution p, or

/ %¢p<¢>d¢.

Since p is the mean quality, which is [ ¢p(¢)d¢, we obtain

m 6 - ™
. / op(p)do e
= m.

So the mean popularity is simply m, irrespective of the quality distribution.
This is quite logical, since after time ¢, a total of (¢ + s)m votes have been cast
for t + s items. On average this is (¢ + s)m/(t + s) votes per item, which of
course reduces to m.

The variance of popularity can be deduced using

Var(X) = E(X?) - E(X)%
Since the last term is simply the mean squared this simplifies to
E(X?) —m?.
Solving E(X?) and plugging it back in gives

2(1 -\ dmax
var(x) = 25 028 /¢ 5 p(0)d6 —m?.

If o is the variance of the quality distribution, then o + p? = [ ¢?p(¢)do.
Simplifying then gives

m2(20(1 — X) + u?)

Var(X) = 212 ,

(2.9)
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We will use this equation to calculate the variance for the various distributions.
It can be seen that the variance of the popularity distribution will increase with
the variance of the quality distribution.

The asymptotic behaviour of P(Xy = k) is k=~ /X or more formally

P(X,=k) €O (k—<1+%>) :

where O is the so-called big-Oh notation. We write this somewhat loosely as
P(X, = k) ~ k~(FYY_ All linear combinations of P(Xs = k) for various
values of ¢ have the same asymptotic behaviour of k~(1+1/2) The popularity
distribution then has the same asymptotic behaviour, regardless of the quality
distribution.

We will review three quality distributions, the delta Dirac distribution (in
which all the items have a similar quality), the uniform distribution and the
exponential distribution.

2.2.1 Dirac Quality Distribution

Let us review the situation that p(¢) = §(¢ — 1). The d(¢ — ¢*) distribution is
called a Dirac distribution. It can be loosely thought of as a distribution such
that the value ¢* (which equals 1 in this case) is drawn with certainty, and all
other values have a probability of zero of being drawn®. Obviously, the average
quality u = 1 and the variance ¢ = 0. In other words, all items have the same
quality. Then, each item will attract votes at a similar rate, only depending on
how much weight is given to the preferential attachment. Using equation 2.8,
we write

B(E) = /0006<¢—1>P<X¢=k>d¢,

which equals
P(k) = (m(1 — N\)> (kA +m(1 — X))~ ) (2.10)
which is equation 2.5 with u = ¢ = 1. So, the expected value and the variance

also remain similar, only with y = ¢ = 1.

2.2.2  Uniform Quality Distribution

Now let us look at a somewhat more complex distribution. Let us assume that
quality is uniformly distributed on the [0, 1] interval, so that ‘good books’ are
just as likely as ‘bad books’. This distribution has a mean of y = 1/2 and a
variance of o = 1/12. If A = 1, we of course maintain a power law distribution

3More formally, the Dirac distribution can be defined such that ffooo f(@)o(¢p — ¢p™)dop =
f(¢*) for a smooth enough f.
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with an exponent of 2, since quality then has no influence. The distribution for
A = 0 remains approximately exponential. We write

1
P(k) = [ B, = e,

o 1 ) (/)
P(k) = / i(m(l — /\)gi))l/A (k/\i +m(1 - /\)gb> do.
0
Simplifying the integral gives us
1 2m(A —1) 1 1
P(k) = B 14+ -, —= 2.11
(k) 2m(1—/\)} ( kA ’ +/\’ /\)" ( )
where B is the incomplete Beta function
B(z,a,b) = / tr 11 —t)’tae, (2.12)
0

and | - | denotes taking the absolute value.

The expected value is of course again m, while the variance increases with A
and with m and approaches infinity as A — 1/2. The variance for the uniform
distribution is given by

m2(5 — 2))
3(1—2)) °
This distribution is a bit more stretched than if we assume the Dirac distribu-
tion, as in equation 2.10. A more heterogeneous quality distribution thus results
in a more skewed distribution.

2.2.3 Exponential Quality Distribution

Perhaps a somewhat more realistic distribution is an exponential distribution
p(¢) = ve~7? with an average quality of 4 = 1/ and a variance of o = 1/72.
Here, ‘good books’ are rare, while the market is overwhelmed by ‘shitlit’. Again,
the distribution becomes even more stretched out, and the distribution for A = 0
no longer is an exponential distribution. The general equation is

—(141/X)
> ”ye*'y‘ﬁdd)

B(k) = / N (1 = ) (";—A (1 - Ao

for which we obtain

F1+3)U (14 4,1, 225
P(k) = +3) m((l—;) c M) (2.13)

where I' is the gamma function
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and U is the so-called ‘confluent hypergeometric function of the second kind’
and has an integral representation as

1
I(a)

Ula,b,z) = / e e (14 t)batae
0

and has asymptotic behaviour

o=+ (1v0(2))

for z — oo, where O is the so-called big-Oh notation (Abramowitz and Stegun
1970). The asymptotic behaviour is thus again P(k) ~ k~(+%).

Remarkably, the parameter v of the exponential quality distribution does
not affect the popularity distribution at all. So, if a quality distribution seems
to follow an exponential distribution, we do not even have to estimate the pa-
rameter 7y, since this has no effect on the popularity distribution. This is the
result of the fact that for an exponential quality distribution the variance is the
mean squared, or o = u2. The variance for the exponential distribution is given
by

m2(3 — 2\)
(1—=2x) "’

which, again, is higher than for the uniform distribution. However, since v does
not play a role, a more skewed quality distribution per se need not result in a
more skewed popularity distribution.

2.3 Analysis

In general, we can state that the more heterogeneous the quality distribution
becomes, the more stretched the resulting popularity distribution becomes, al-
though this result it somewhat ambiguous if we study an exponential quality
distribution. Still, all retain an asymptotic behaviour of P(k) ~ k~(+1/2) for
k — o0, thus showing power law behaviour in the tail, regardless of the quality
distribution.

2.3.1 Volatility

Since m is the mean for all popularity distributions, we may simply interpret m
to be the average number of views a movie gets, or the average number of sales
a book achieves. This interpretation allows for a simple estimation of m.
However, another, more interesting interpretation is also possible. Since m
is also the number of votes cast between two successively introduced items, we
may interpret the reciprocal 1/m to indicate the relative volatility of a market.
So, let us define volatility as v = 1/m. A volatility of v = 1 indicates a
highly volatile market. It indicates that relative to the number of views, new
items are introduced at a fast pace (m = 1). A volatility near v = 0 then
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Figure 2.3: Popularity distribution for the various quality distributions. Here m = 100 and
A =1/10. It can be seen that the Dirac distribution is the least stretched out, the
uniform distribution is a bit more stretched out, while the exponential distribution
is even more stretched. The asymptotic behaviour can be seen to be similar for
all three distributions.

indicates a nearly static market (m — 00), since new items are almost never
introduced. In a highly volatile market, new items are frequently introduced,
while in a less volatile market, new items tend to be introduced less often.

From the mean number of votes m, it can be deduced that a market in
which volatility is higher receives less votes on average per item. This makes
sense. After all, when we are confronted with new products daily, we tend to
loose track of previous products relatively quickly. Similarly, in a rather static
market, we are confronted with similar items for days on end, giving a higher
average number of votes per item.

From the variance of the uncertainty distribution (equation 2.7) it can be
seen that a more volatile market results in less uncertainty and a lower average
number of votes.

2.3.2 Inequality

The popularity distribution is quite extremely skewed. It suggest that the bulk
of the items—usually more than halve—never achieve anything above the aver-
age. Vice versa, most of the total number of votes are accounted for by a small
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number of popular items. This distribution approximately follows the 80/20
rule of thumb, which implies that the most popular 20% of the items account
for 80% of the votes. The exact figures depend on social influence of course.

Let us study the simplest version of the model, assuming the Dirac distribu-
tion. How many votes does the less popular halve obtain maximally? Or what
is the K for which P(X < K) =1/2. So we need to solve

K 1
P(X < K) :/ P(k)dk = 3
0
Since

P(X < K)=1—- (m(1—X)X(KX+m(l—X)"",

we obtain

(2* =1)m(1 =)

3 .
So, for A = 0.5 and m = 100 for example, about half of the items have less
than approximately 42 votes. The fraction L that is accounted for by the less
popular halve can be given by the average number of votes for items having less
than K votes, compared to the general average number of votes. This is

K =

_ S kP (k) dk _ E(X|X < K)

Jo° kP(k)dEk m ’

L

where E(X|X < K) is the expected number of votes for items having less than
K votes. In the example this evaluates to about 8.5%. So the less popular halve
of the items account for only 8.5% of the votes, while the more popular halve
account for about 91.5%.

More generally, for the Dirac distribution, the level K at which a proportion
p of the items remains below is given by

_m-N(-p) -1
A

K

Now the fraction L of the votes that are accounted for by the least popular p
items can be given as

1= =-pr=p -
_ - ,

L(p) (2.14)
which is known as a Lorenz curve. Rather surprisingly, the Lorenz curve is
independent of m. This means that inequality is determined by A only. So,
whether the market is volatile or not does not have an influence at how unequal
the distribution is. The behaviour of this Lorenz curve is displayed for various
levels of social influence in figure 2.4. It can be seen that with rising social
influence the inequality rises.

Clearly, the more a Lorenz curve deviates from the line of full equality, the
more unequal it will be. The area below the line of full equality thus signifies the
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Figure 2.4: Lorenz curves for various levels of social influence illustrating the inequality for
the Dirac popularity distribution. For example, for A\ = 0.5 the bottom 80% of
the items account for a little over 30% of the votes. Stated otherwise: the top
20% is responsible for almost 70% of the votes. The main diagonal is the line of
full equality. The inset shows visually how the Gini coefficient is obtained.

amount of inequality, as is illustrated in the inset of figure 2.4. The following
definition quantifies this inequality and is known as the Gini coefficient

1
G=1 —2/ L(p)dp,
0

which for the Dirac distribution equals

1
G= —— 2.1
2-\ (2.15)

giving a Gini coefficient of G = % even for A = 0. It should be borne in mind that
this analysis is for the Dirac quality distribution only. The other distributions
probably show even more extreme inequality. For more information on Lorenz
curves and Gini coefficients see Gastwirth (1972).

The Gini coefficient is widely used to give an indication of the inequality of
the distribution of wealth and income in countries. Although this type of distri-
bution is unrelated to the distribution under study here, to get a sense of what

a low and high Gini coefficient is, we might as well give some examples. For
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Figure 2.5: Gini coefficient G for the Dirac distribution. Even for A = 0 inequality as measured
by the Gini coefficient is %, which is quite high.

comparison, most countries? have Gini coefficients between 0.3-0.6 for the in-
come distribution. Sweden has a traditionally low Gini coefficient of 0.25, while
inequality in the United States is somewhat higher with 0.40, but compared
with one of the highest Gini coefficients of 0.63 for Sierra Leone, the United
States does not have an extremely skewed income distribution. My model thus
shows a greater inequality than most income distributions.

In the experiment of Salganik et al. (2006) they find a Gini coefficient for the
independent setting of somewhere between 0.2-0.3. The Gini coefficient rises
when social influence is increased, ranging somewhere between 0.4-0.55. These
figures are substantially lower than what I predict. It is possible however, that if
the experiment lasts longer, and if the market grows, the Gini coeflicient might
rise to match the level I predict. Still, the fact that inequality increases with
social influence is confirmed by the theoretical model.

If we apply the same analysis of the Lorenz curve and the Gini coefficient to
the uncertainty distribution, we obtain the same results. The mean number of
votes for the less popular p items is proportional to the mean number of votes
me/u. Hence, the Lorenz curve is independent of the average me/u, and so is
the Gini coefficient. If we express uncertainty as a Gini coefficient, it is only
effected by social influence and equals equation 2.15. Details of the derivation

4See UNDP (2007).
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of the Lorenz curve and the Gini coefficient are given in section C.5.

From the model point of view, it is then no coincidence that Salganik et al.
(2006) find rising inequality and uncertainty with social influence. After all,
inequality and uncertainty are two side of the same coin, namely social influence.
Both inequality and uncertainty rise with social influence.

2.4 Generating Networks

The model suggested here has connections with models for growing networks.
Many networks, such as the internet, actor collaboration, power grid network
and scientific citations show power law behaviour in their degree distribution.
They are said to be scale-free. A network, or graph, has several vertices (web-
sites, actors, power stations, scientific publications) and several edges or arcs®
(hyperlinks, collaborations, power lines, citations) running from one vertex to
another.

The number of incoming edges/arcs is said to be the indegree k; of vertex
i. Each vote in the model can then be seen as an incoming link for vertex
(item) 4, and thus signifying its degree. An overview of several models and their
behaviour can be found in Newman (2003) and Albert and Barabasi (2002).

2.4.1 Classic Model

The first® model suggested to account for the observed degree distribution on
the web is the BA-model, named after their authors Barabasi and Albert (1999).
Their model works as following. We start out with some mg vertices, and
introduce a new vertex at each time step. The new vertex establishes m < myg
new arcs, where the other end of the arc is chosen with ‘preferential attachment’,
that is, vertices with a higher degree have a higher probability of receiving an
incoming arc. This process is then iterated.

Their conclusion is that the degree distribution stabilises after a while. That
is, although the network keeps on growing, the degree distribution essentially
remains the same. The distribution is then said to be a stationary distribution.
They found for the indegree distribution P(k) = 2;22 which is similar to my
results for A = 1 if we realise that Y k; = 2mt for the BA-model (they examine
both incoming and outgoing links) and equals mt for my model (I examine only
incoming ‘links’, which I call votes).

Albert and Barabasi then go on to demonstrate that both growth and prefer-
ential attachment are essential for obtaining a scale free stationary distribution.
They consider two alternative models, model A and model B. In model A there

5Edges usually refer to undirected links (i.e. they have no direction), while the term arcs
refer to directed links (i.e. they point from some origin vertex to some destination vertex).

5De Solla Price (1965) presented an earlier model, which T mentioned at page 15. He
used it to account for the observed power law distribution of scientific citations. This is
approximately the same model as the one from Barabasi and Albert. Barabasi and Albert are
the ones suggesting however, that a similar model could also be used for degree distributions
of the internet for example.
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is no preferential attachment, while in model B there is no growth. So in model
A the endpoints are chosen with equal probability. If we set A = 0 and as-
sume a delta Dirac quality distribution my model mimics this behaviour, and
my solution is the same as for their model A. In model B growth is absent but
preferential attachment is present. The model seems to exhibit power law be-
haviour at first, but since the number of arcs only increase while the number
of vertices does not, the network soon becomes completely connected”. Hence,
the power law behaviour is unstable.

Our model generalises these results from Barabasi and Albert, and shows
that ‘preferential attachment’ need not be fully present in order to obtain a
power law distribution in the tail. In fact my model interpolates nicely between
model A and the actual model suggested by Barabasi and Albert.

2.4.2 Fitness model

It seemed unrealistic that the BA-model would account for the complete growth
behaviour of these complex networks. For example, when the search engine
Google® was launched, it began attracting hyperlinks to itself at a much higher
rate than other websites, despite its initial low indegree. So, something else was
affecting the way vertices accumulate edges.

Bianconi

This is taken into account by Bianconi and Barabasi (2000), who have intro-
duced ‘fitness’ of a vertex to account for this behaviour.

The process is largely the same as in the original model. We start with some
initial number of vertices mg, and introduce a new item every time step which
links to m of the existing vertices. But, the probability of linking to a vertex is
now not only dependent on the degree k; of a vertex i but also of the fitness ;.
They assume the probability of getting an edge to be

niki
I = — 1
> ik

So the final degree distribution will depend on the fitness distribution p. For
p(n) = 6(n — 1) a distribution in which all the items have a similar fitness, the
model reduces to the original BA model, which of course coincides with A = 1
in my model.

For a uniform fitness distribution on the [0, 1] interval they obtain the solu-

tion
L—(1+C7)

)

P(k) ~ log k

where C* = 1.255, which is more stretched out than the original BA model.
This suggests that when more variance is introduced in the fitness, the variance

7A completely connected network or complete graph, is a graph in which every vertex is
connected with all other vertices.
8http://www.google.com
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of the degree distribution also increases, as is the case in my model. The exact
forms do differ however.

My model might serve as an alternative fitness model to the model suggested
by Bianconi and Barabasi (2000). It allows a qualitatively similar process of
accumulating links (or votes in my vocabulary), but allows the possibility of
varying the social influence as well. So quality can be given more or less weight
depending on the context.

Pennock

Another model taking ‘fitness’ into account in a certain way is considered
by Pennock et al. (2002). They consider the preferential attachment to be®

L1 ki
s+t 2mt’

I = (1= X)

When compared to my version of preferential attachment (as stated in equa-
tion 2.1) it becomes clear that the model considered is the same as my model
for the Dirac distribution (cf. equation 2.10). The only difference here is that
they consider the total connectivity in the graph (i.e. 2mt instead of only the
incoming links mt). Hence, the stationary indegree distribution is the same as
mine.

The authors consider histograms with logarithmic binning for the model.
The binning size thus increases exponentially, and the bounds for the i-th bin
are 1076 — 1 to 100+1/6 — 1. By substituting k = 10¥/6 into the cumulative
distribution, differentiating it with respect to k, and substituting back k' =
6log,, k they obtain a version of the probability distribution appropriate for
visualising the model in a histogram with logarithmic binning. More generally,
one can assume the bounds of the bins to be e — 1 to e*t1) — 1 for a > 0.
The transformed probabilities for the Dirac quality distribution then becomes

ak(m(1 — A)X (m(1 = A) + kA) "0+,

where Pennock et al. have set o = log10/6. As the authors also show, the
maximum of the transformed probabilities is m(1 — A) (in their article it is
2m(1 — X) because of the difference in counting the total degree). This means
that for logarithmic binning, the mode is larger than zero (if m > 0 and A < 1).
The transformed probabilities first increase, obtain their maximum at m(1— M),
and then decrease again. This means that the probabilities decrease slower than
exponentially for low k. Beyond the maximum, the decrease in probabilities is
faster than exponential.

The authors are mainly interested in the low & region of the connectivity of
the web, as this deviates significantly from a power law. They show this model
captures the behaviour for various subcategories of webpages well. They report

91In the original article they have used « instead of A and mg instead of s. But substituting
A for a and s for mg seems a good idea, since it then agrees with my definitions.
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relatively high social influence estimates!® for companies (0.950) and newspapers
(0.948) and somewhat lower scores for universities (0.612) and scientists (0.602).
This seems to indicate that for websites of universities and scientists quality
plays a higher role than for companies and newspapers.

My model and the model of Pennock et al. differ in two aspects. Firstly, I
reserve the possibility of another quality distribution, while they only investigate
a Dirac quality distribution. Secondly, they do not interpret the parameter
A as being a measure of social influence. These two differences allow us to
investigate what the effects of quality and social influence are. My conclusions
regarding uncertainty and inequality go beyond the analysis Pennock et al. have
undertaken.

10They use a histogram with logarithmic binning and least squares to fit the distribution.
Although a preliminary analysis shows this method to be quite good, the standard errors are
larger than with maximum likelihood estimation (see chapter 3.)



Chapter 3

Estimation and Testing

3.1 Estimation

Having formalised the model, it can be empirically analysed. More specifically,
we would like to know what the amount of social influence is and how many
votes are cast in between two successively introduced items. In short, we need
to estimate A\ and m on the basis of a sample.

Suppose we have a random sample x1, ..., x, of size n from some market of
items. The population consists of all items, and we have drawn a sample from
this population. Of course we do not know what the distribution of popularity
in the population looks like, and we do not know what the amount of social
influence in the population is. Therefore, we try to estimate the social influence
from our sample. We denote the estimate of social influence with A, where
the hat over the parameter signifies an estimate of the actual value A in the
population.

Suppose we know A. Then we could describe the probability that our first
sampled item has exactly x; votes by our popularity distribution. Given A,
the probability of drawing z; from the population distribution is P(z1]|A). Of
course, the probability of drawing z5 from the population is similar: P(xa|)).
The probability of drawing both z1 and x2 is then P(x1|A)P(z2|A). Hence, if we
would know A\, the probability of obtaining the exact sample x4, ..., z, is

n

[P,

=1

As T said earlier however, we do not know what the social influence in the
population is. But let us turn things around. We may ask how likely a specific
value of A\ is given the sample. For some values of A we will see a higher
probability of having drawn the sample than for other values of \. We say that
the value of A for which that probability is higher is a more likely value. We

36



3.1. ESTIMATION 37

can write the likelihood function as

n

L) = [[P(xilN).

=1

The values of A for which the likelihood L£(A) is greater are more likely
candidates for the population parameter A. So the value for which the likelihood
obtains a (global) maximum can be considered to be the most likely value. This
gives our estimate \ of the population parameter A.

The product of the probabilities is usually rather difficult to analyse. A
useful transformation in that regard is taking the logarithm of the likelihood.
Doing so yields

log£L(A) = log H P(a;|A\)
i=1

= ) logP(xi|)).
=1

Since the logarithm is a monotonically increasing function, the log-likelihood
will obtain its maximum at the same value of \ as for the ordinary likelihood.
So we can maximise the log-likelihood instead of the ordinary likelihood. In
order to find the maximum, we need to set the derivative equal to zero, and
solve for A\. So the A for which

holds gives us the estimate A. This procedure is known as mazimum likelihood
estimation, and gives us the mazimum likelihood estimator (MLE). Estimators
of this kind are known to provide good estimates. For more information on
maximum likelihood estimation see Myung (2002).

Lets work out this procedure for the simplest model. According to equa-
tion 2.10 for the Dirac quality distribution, the probability is:

P(k) = (m(1 — \)> (kA +m(1 — X))~ T3

So given the sample of x1, ..., z,, we can write the log-likelihood as
n 1\ &
log £ = 3 logm(l —\) — (1 + X) ;log (xA+m(1—=N)). (3.1)

Now we would like to maximise the likelihood. In order to do so, we need to
set the derivative equal to zero. Unfortunately, this yields no closed expression
to find A. So we will have to approximate A numerically. Various methods are
available to numerically maximize the likelihood, see section B.2 in the appendix
for more information.
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We have simplified the log likelihood for the other models as much as possi-
ble. For the uniform distribution we obtain

B (M,1+l —1)‘, (3.2)

10g£:—n10g2m(1—)\)+210g o DY

and for the exponential distribution
1
logL = n <1ogI‘ <1 + X) —logm(1 — /\)) +

ZlogU<1+§,1,%i/\)>. (3.3)

Similarly for the uniform and exponential behaviour there is no closed-form ex-
pression, so we will numerically determine for which values of A the log likelihood
obtains its maximum.

We can estimate m in a simple way as it is the mean popularity, with m =
T = % > ;. It is easy to see that this gives an unbiased estimate since

E(m) = E<%Zx)

This estimate is not the MLE given by the above procedure, however. If we
would use the MLE, it would need to be determined numerically, thereby in-
creasing the required computation power. Furthermore, since we know m does
not depend on A or on the quality distribution, we would like to keep it constant
when estimating A for the various quality distributions. That way we can com-
pare the various estimates of A somewhat better. Using the mean for estimation
provides us with such a steady estimate.

3.2 Testing

Having an estimate A available does not imply that the sample was in fact
drawn from our hypothesised distribution. It merely gives the most likely value
of A should the sample be drawn from our distribution. We still need to find
out whether our theoretical distribution is a ‘good’ model for the empirical
distribution at all. In order words, we need to perform a goodness-of-fit test.
Such a test is the Kolmogorov-Smirnov test, or KS-test for short. This test
provides a statistic by which we can judge whether our distribution fits the
sample nicely. I follow the procedure as recommended by Clauset et al. (2007).
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Two quantities are computed with the KS-test: the so-called D-statistic
and a p-value indicating how probable it is to have found such an extreme D-
statistics as we did (assuming that the data in fact did come from the hypoth-
esised distribution). The D-statistic quantifies the deviation of the empirical
data from our hypothesised distribution. The p-value states whether the devi-
ation as measured by the D-statistic is large enough to reject the hypothesis
that the empirical data was sampled from our hypothesised distribution. If this
deviation is sufficiently large, we obtain a small p-value, and if the deviation
is small, we obtain a large p-value. Hence, if we find a large p-value, the data
might be—we are never certain—from the hypothesised distribution. On the
other hand, if our p-value is small, we should reject this hypothesis, and conclude
that the sample was not drawn from the hypothesised distribution.

More formally, the D-statistic is defined as

D = max |S(xz) — P(z)|,

where P(x) is the cumulative distribution function of the hypothesized distribu-
tion and S(z) is the empirical cumulative distribution function. In order to find
out whether such a result is probable or not, we need to calculate the p-value.
Formulas for calculating a p-value are available, but only if the parameters of
the hypothesized distribution are known instead of estimated. So I will use
the method outlined by Clauset et al. (2007). That is, we generate some large
number of samples of the same size as the empirical sample. Then, for each
generated sample we calculate the best fit and the D-statistic. We subsequently
check what fraction of the generated samples had a D-statistic as extreme as
ours. That fraction is our p-value.

In order to generate these samples, we need a method to obtain a random
number from the hypothesised distribution. The following method was used
for obtaining a random sample. Most programming languages and statistical
programs have a uniform distribution random number generator on the inter-
val [0,1] available. Now if k is a random variable distributed according to a
probability density function p(k), then P(k) = r, where P(k) is the cumulative
distribution function associated with p(k) and r is uniformly distributed on the
[0,1] interval. This is known as the integral probability transform. Solving for
k then gives a random number from the distribution, or k = P~1(r). For the
Dirac quality distribution we obtain

k= %mr_)‘(r’\ —1)(A-1)
Unfortunately, we cannot obtain similar results for generating random numbers
for the other distributions. This does not prevent us completely from generating
such random numbers however. We could generate a random number r and
numerically find k& such that P(k) = r. This number k is then a random
number drawn from our distribution. It should be noted however, that this
is computationally intensive, and thus prevents us from obtaining a random
sample in most practical settings for the uniform and exponential distribution.
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Summarising, we need to do two things: estimate A and perform the KS-test.
In order to estimate A we need to numerically maximise the (log) likelihood
function. For the KS-test we need to generate a large number of samples (in
the order of 10,000). These samples require us to generate a large number of
random numbers, depending on the empirical sample size. So in total, quite
some computational power is required.



Chapter 4
Empirical Analysis

For the empirical analysis, a number of questions need to be addressed. Firstly,
is the assumption of ‘preferential attachment’ satisfied? Secondly, are items
indeed being added at a steady rate? Thirdly, what does the underlying quality
distribution look like? Finally, do the popularity distributions fit the data well?

Sampling was based on the notion of ‘related’ movies. YouTube provides a
mechanism to see what movies are related! to each other. I started out with
the movies from the top viewed, top rated and recently featured list. This was
done, so that I at least have movies in the tail of the distribution. The recently
featured list was taken in, so that movies that were less popular were not left out.
Unfortunately, this beclouds the possibility to say the sample is fully random.
So, I have no way to guarantee randomness, but I will assume that the sample
provides a relatively good impression of the population.

In order to provide an answer to the first question, I have sampled data from
YouTube at two times. First I collected a sample at 23 December 2007, and one
week later I revisited these movies, in order to obtain an estimate of how many
views each movie attracted in the meantime. In total I collected valid infor-
mation on 200,201 movies?. The information collected was the age (difference
between the time it was uploaded and the time I retrieved the information), the
rating and the view count of the movie. And, as stated, one week later I again
collected the view count information which provides an estimate of how many
views the movies attracted in the meantime.

The first collection of the data took about two days, and the second col-
lection of the data took about one day. Some request gave bad data, which I
subsequently threw out, but I do not expect this to bias the sample, since these
errors seemed to be randomly distributed. For technical information on how I
retrieved the data see appendix A.

1Full details of how movies are related are undisclosed. It probably depends on common-
alities in tags, viewed by the same person, et cetera. ..
2Data are available from the author upon request

41
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4.1 Assumptions

4.1.1 Preferential Attachment

The number of views added in a week are expected to be proportional to k.
Let k£ be the view count, and Ak be the number of video’s added over a period
of At, about a week. A logarithmic regression (r? = 0.6453) suggests that
Ak =~ 0.0281k%78. From equation 2.1 we obtain that Ak; ~ (1 — \)¢; + Ak;
where ¢; is some normalised quality. For A = 0, we would expect an exponent of
0, and for A = 1 an exponent of 1. An exponent of 0.78 is then a quite plausible
result. The results can be seen in figure 4.1.

Some amount of preferential attachment is present, although it still shows
quite some variation, which might be due to the intrinsic qualities of the items.
The time frame was comparatively long. After one day, the number of views
have already increased. This has an impact on the probability of obtaining more
votes. Hence, the time frame should be small enough to measure preferential
attachment accurately, but it should be long enough to allow items to obtain
additional votes. More accurate results might have been obtained if the time
frame was a little shorter.

Having sampled YouTube movies at multiple times, Cheng et al. (2007) can
more specifically determine whether indeed the growth trend follows approxi-
mately equation 2.4. They report a sublinear growth of the kind k& ~ t* where
a < 1 for most movies. Hence, the growth flattens off, as predicted in equa-
tion 2.4. This confirms that the preferential attachment assumption is not
entirely unrealistic.

The solution from equation 2.4 seems to be confirmed as well by Johansen
(2001; 2004; 2005). After Johansen was interviewed, and thus had some media
exposure, he measured the number of downloads on each day. The cumulative
number of downloads is found to fit the model k; = (1 — b)71(t/t;)} "% + ct. In
general Johansen suggests that the download rate follows a power law dk; /0t ~
t=b. This corresponds well with the solution as stated in equation 2.4.

It is suggested by Chessa and Murre (2004) however that an exponentially
decaying function better fits the data collected by themselves as well as the
data collected by Johansen. Their results are based on a cognitive memory
theory, wherein response times roughly vary with individual memory duration.
It seems more appropriate however to model response times in a social con-
text. Not everybody is exposed to an event at the same time, and the variance
in response times is probably not due solely to individual memory duration.
More likely, only some people are exposed a certain event (or the information
regarding the event), and these people spread the information throughout the
network. Chessa and Murre investigate whether such propagation through a
social network is present, and indeed find such behaviour for their data. The
better fit of the exponentially decaying function is disputed by Johansen (2005)
who suggests that the cumulative downloads are better fitted by his model.
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Figure 4.1: The average number of views received daily versus the view count. Logarithmic
regression (r2 = 0.6453) suggests Ak ~ 0.0281k%-78 which is displayed as the solid
black line.

4.1.2 Uniform Introduction Rate

In order to answer the second question we can simply plot the time of introduc-
tion of the items in our sample, which can be seen in figure 4.2. It shows the
time of introduction of the items in days, versus the rank of the items in the
sample. If items were to be introduced at a uniform rate, then between any two
items having a similar difference in age we should see approximately a similar
difference in rank, or simply put, a linear trend?®.

Figure 4.2 seems to show such behaviour in the cumulative number of movies,
at least from ¢ =~ 400 onwards. This makes sense since the sample was drawn
at 23 December 2007, and YouTube started at 15 February 2005, which is a
difference of just over a thousand days. So, presumably, the first year things
needed to get going, and we can see the rate at which items are being added is
increasing from time 0 until 400, and after that remains relatively stable.

The rate at which movies are being added seems to be going slightly down
after time ¢ ~ 700, whilst the increasing popularity of YouTube would suggest
an increasing rate. This could be explained by the fact that I collected data

3In fact the empirical cumulative distribution is displayed. If the items are being added in
at a uniform rate, or p = 1/b where b &~ 1000 is the maximum age, the cumulative distribution
is P(z) = [y 1/bdt = x/b for 0 < 2 < b, hence is linear.
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Figure 4.2: New items seem to be added at an increasing rate per day du/d¢, which is shown in
the histogram using the left y-axis. The solid line displays the cumulative number
of items u added before a certain time using the right y-axis. The solid black line
shows the cumulative distribution, which almost seems to follow a linear trend
from ¢t ~ 400 onwards, suggesting a steady rate. The daily rate is fitted to a
logistic curve ‘é—‘; = 1+1§+ct with estimates a ~ 338, b =~ 412 and ¢ ~ 0.0183. The

green line shows the integral of the logistic curve, adapted so that it equals zero
at t = 0. The drop-off in the last 300 days or so might be due to the sampling
method.

through the concept of ‘related movies’. Possibly, more recently introduced
movies are slightly worse connected in the network of related movies, and thus
have a lower probability of turning up in the sample. The change in rate seems
to be rather small however.

When we look at the movies added per day in figure 4.2 however, the rate
seems to be increasing from time ¢t = 0 until ¢ ~ 400. This is in agreement
with results from Cheng et al. (2007). They fit a power law to the rate at which
movies are uploaded. They expect the rate at which movies are uploaded du/d¢
per day to increase with time ¢ as du/dt = t* where o &~ 1.91. The number of
total movies u is thus t**1 /o, or u ~ 291,

As there is an upper limit to the number of people actively involved—all
the people on the planet at most in any case—there is probably an upper limit
for the rate at which movies are added. So, a power law does not seem very
realistic for the rate of introduction. The rate of introduction will more likely
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follow some sort of logistic curve, which follows largely an S shape. I have fitted
a logistic curve of the form

du a

dt 1+ be—ct

which approaches 0 if ¢ — —oo and approaches a if ¢ — oo. So, a can be
interpreted as the upper limit of the rate of introduction. The parameters b and
c indicate how fast the growth is. The estimates of the parameters are a ~ 338,
b~ 412 and ¢ ~ 0.0183 with 2 ~ 0.889 and is shown in figure 4.2. According to
the logistics function, the rate will thus stabilise at approximately 338 movies
a day*. Of course, with the slight decrease in rate in mind after ¢ ~ 700, this is
no conclusive evidence whether the rate actually has stabilised.

Even though Cheng et al. (2007) fit a power law function, which keeps on
increasing, it seems more appropriate to fit a logistic function, where the rate
of introduction eventually stabilises. With an 72 of 0.889 the logistic function
performs quite well.

In summary, a uniform introduction rate is not apparent from the start, but
it may show such behaviour after ¢t =~ 400. The evidence seems to be inconclusive
however. Perhaps this assumption is violated for the YouTube market, but this
is uncertain.

4.1.3 Quality Distribution

The third question concerns the underlying quality distribution. Unfortunately,
this is quite difficult to estimate. At first glance, the ratings might provide
such an estimate, but this seems unreliable. Probably a lot of people rate a
movie only if they actually like it. When people dislike the movie, or are just
indifferent to it, they are presumable more likely to close the movie, than to
actually rate it.

Furthermore, we could wonder whether ‘intrinsic quality’ is actually what
people have in mind when they rate a movie. So, the rating could very well
measure something different than what we would like to. In more technical
terms, it might not be a valid indicator.

The cumulative distribution however is displayed in figure 4.3. It can be
seen from this illustration that most of the ratings are actually below 4. This
is consistent with findings from Gill et al. (2007).

The best solution in order to obtain a relatively autonomous estimate of the
‘intrinsic quality’ is to rule out any social influence. Of course, this is not easily
done, since the view count does not only play a role on the website itself (it
being displayed there), but it also plays a role in the contacts people have with
each other. What it will probably do, at the very least, is to diminish social
influence, since preferences can then only be transferred through social contacts.

41t should be kept in mind that I cannot provide an estimate of the rate at which movies
are being uploaded, since this estimate would increase with sample size. The figure of 338
can therefore only be interpreted within the context of this thesis, and has no ramifications
for other studies.
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Figure 4.3: Empirical cumulative distribution function of the ratings r of the sample from
YouTube. As can be seen, about 80% of the ratings are between 4 and 5, where
5 is the highest rating that can be given.

Data of this kind were actually collected by Salganik et al. (2006) in their
experimental study of inequality in a cultural market®. The independent setting
of their experiment has the lowest social influence. It does not report the number
of downloads or the rating, and social influence is thus limited to social contacts.
Of course, social influence may manifest itself in this way. Still it will be a
relatively ‘clean’ environment. We could look at their data, and try to estimate
a quality distribution. Unfortunately, at the time of writing, the data are not
yet available.

So, as a quality distribution is not available to us empirically, I have analysed
the model for all three quality distributions.

4.2 Model

There are two parameters to be estimated for the various models: the mean
number of votes/views m and social influence A. Because of computational
limits I used a smaller sample of 9,997 for these procedures. The estimated
average number of views is ™ =~ 339,548. Since m does not depend on the

5We introduce their research shortly on page 23.
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underlying quality distribution, I will use this estimate for all distributions.

It should be observed that our theoretical distributions are stationary dis-
tributions. That is, after a while they should change little. So we would also
expect the distribution from YouTube to approximate this stationary distribu-
tion. Hence, regardless of the time at which we draw a sample the results should
approximately be similar. This behaviour is actually observed by Cheng et al.
(2007) who drew samples from YouTube at various instances in time.

It should be taken into account that the empirical standard error of the mean
still is about 16,901. When social influence A > 1/2 variance goes to infinity,
and so will the standard error. Of course, a finite sample with finite values will
always produce a finite estimate of the variance. But if social influence is indeed
higher than 1/2, the estimated mean m can vary substantially from one sample
to the next.

We ran the procedure for estimating A for each distribution (Dirac, uniform
and exponential). The estimates for the data collected from YouTube are dis-
played in table 4.1. The total social influence is estimated to be within the
range of 88-94%. The theoretical and actual YouTube results can be seen in
figure 4.4. It can be seen that for more skewed quality distributions, the social
influence indeed does decline. Social influence remains high however.

This means that—if the model is correct of course—relatively much of the
actual view count is accounted for by how many views a movie already got.
Quality thus seems to be relatively unimportant. The amount of social influence
is lower for more heterogeneous quality distributions, reaching 87.8% for the
exponential case.

In Gill et al. (2007) the view count is reported to follow a power law, which
they fitted with an exponent® of 2.79. Since all models follow a power law
asymptotically k~(111/2) this yields an estimate of social influence of 0.56. The
data analysed by Gill et al. (2007) however is gathered only locally on a campus,
so will probably differ from the global distribution. Their analysis still seems to
indicate that also in local communities some social influence is present.

The presence of social influence is also supported by the difference between
the growth in the unique number of movies viewed by the users on the campus
and the total number of movies viewed on the campus. The unique number of
movies viewed increases much slower than the total number of movies viewed
over time. This indicates that movies are being recommended between friends,
thus resulting in the slower increase in the unique number of movies viewed.

Next to the analysis of YouTube data, I also analysed data from the Hol-
lywood movie industry. This makes possible not only an additional empirical
analysis, but also a comparison between a traditional and an on-line market.

6They plot the rank R against the view count F, and fit a Pareto distribution, such
that FF ~ RP using least squares regression analysis. So, R ~ F~1/#  Since the rank is
simply the number of items that are larger than F', the derivative of this gives the proba-
bility density function, hence F-+1/8) - A good explanation of these relationships can be
found at http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html. Estimating the
exponent by least squares regression analysis has serious bias, and is therefore not recom-
mended (Clauset et al. 2007). The exponent should be interpreted with caution.
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Dataset Distribution | A Std. Error
Dirac 0.938 1.263-1073

Youtube Uniform 0.908 2.063-1073
Exponential | 0.878 2.878-1073
Dirac 0.843 6.916-1073

Hollywood | Uniform 0.740 —
Exponential | 0.663 1.726-10"2

Table 4.1: Overview of the estimates for the various models for the YouTube data set and for
the Hollywood movies data set. Only items with k£ > 0 were evaluated.

The Hollywood data was collected from the website The Movie Times’. I have
not performed checks on the assumptions as I did for the YouTube case though.

The website reports gross income, which I use as an indicator for popularity.
Although I would rather have the actual number of visitors, the gross income
will be quite a good indicator for popularity. The gross income is reported in
millions of dollars® in the USA.

We collected data for the years 2000 until 2007, totalling to n = 2615 movies.
The minimum reported gross income is $0.005 million dollars or about 5,000
dollar for the movie The Intruder, which appeared in only one theatre. This
contrasts with the maximum reported gross income of about $438 million for
the movie Shrek 2, which appeared in 4223 theatres. The mean gross income is
m =~ 26.97 million dollars with an empirical standard error of about 0.98.

Now we can compare the relative volatility of the two markets. According
to the the MPAA® the average ticket price between 2000 and 2007 is about
$6.11. As a rough estimate, the average number of views per movie is 7/6.11 ~
4,414,275. This yields a volatility!? of 7 = 1/1m =~ 2.26 - 10~7. The volatility
for YouTube is © ~ 2.94 - 10~%. Although it is relatively hard to interpret this
figure on itself, we can at least compare the two. It indicates that YouTube is
in the order of 10 times more volatile than the traditional Hollywood market.

Of course, there are several uncertainties with this comparison. First, the
mean 1M is expected to vary substantially from sample to sample. Secondly,
I only used an average ticket price to calculate the number of views for the
Hollywood market. Thirdly, due to the sampling methods, I might have missed
out on some of the lesser viewed movies for both YouTube and Hollywood.
Including these less popular movies would lead to a lower estimate of both
means (and thus a more volatile market). Still, with YouTube being more than
10 times more volatile than Hollywood, the difference is quite striking.

The estimate A for the social influence is also substantially lower for the

Thttp:/ /www.the-movie-times.com

8The scale of measure for popularity does not make a difference for the estimate of X\. Stated
otherwise, any linear transformation of the gross income (multiply or divide by a constant)
does not change the estimate.

9Motion Picture Association of America, see http://www.mpaa.org

10See section 2.3.1 on page 27 for details on volatility.
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Figure 4.4: Empirical and theoretical results for various distributions for the YouTube market.
The fitted parameters can be seen in table 4.1. The inset shows the residuals (i.e.
the difference between the actual and predicted values) for the Dirac distribution,
but note that only the x-axis is on a logarithmic scale. The residuals for the other
distributions are alike.

Hollywood market than for the YouTube market, which can be seen in table 4.1.
The results for the Hollywood market are displayed in figure 4.5. The estimate
of social influence ranges from 84.3% for the Dirac quality distribution to 66.3%
for the exponential distribution.

Since the asymptotic sampling distribution of any MLE is normally dis-
tributed, we can easily test whether the difference in social influence is signifi-
cant. The difference between the YouTube and the Hollywood estimates of social
influence has a standard error of 1/(1.762 - 10-2)2 + (2.878 - 10~3)2 ~ 0.0174983
assuming an exponential quality distribution. The actual difference is 0.245,
which is about 14 times the standard error of the difference, which implies a
one-sided p-value in the order of 7- 10745, which is highly significant. Similarly
for the estimates of social influence assuming a Dirac quality distribution, we
obtain a one-sided p-value of about 6 - 10742, We thus have statistical confir-
mation, that the social influence is significantly higher for the YouTube market
than the Hollywood market.

The YouTube market shows an inequality Gini coefficient of 0.881, which
is somewhat lower than a coefficient of 0.942 what would have been predicted
based on my analysis for the Dirac quality distribution (cf. equation 2.15).
The Hollywood market also shows a somewhat lower Gini coefficient of 0.744
than the prediction of 0.864. Hollywood does score lower than YouTube though.
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Figure 4.5: Empirical and theoretical results for various distributions for the Hollywood mar-
ket. The fitted parameters can be seen in table 4.1. Observe that k is in millions
of dollars. The inset shows the residuals (i.e. the difference between the actual
and predicted values) for the Dirac distribution, but note that only the x-axis is
on a logarithmic scale. The residuals for the other distributions are alike.

Hence, YouTube shows more inequality than Hollywood, in congruence with my
predictions.

In the insets of figures 4.4 and 4.5 the deviation of the data from the theo-
retical distributions can be seen. The inset shows that for low k the theoretical
model tends to overestimate the actual probabilities, and for somewhat higher &
the theoretical model underestimates the actual probabilities. More specifically,
the tails of the distributions do not seem to follow a power law. This clearly
deviates from the theoretical distributions. Other distributions might provide a
closer fit.

So, I also analysed the log-normal distribution. The parameters are esti-
mated to be i = 9.95 and & = 2.56 for the YouTube data and g = 1.27 and
& = 2.55 for the Hollywood data set. With a p-value of about'! 0.506 for the
KS-test, the result for the YouTube data is not significant, which indicates that
the sample might be drawn from a log-normal distribution. The p-value for the
Hollywood data set is about 0.505 which suggests that this sample also might
have been drawn from a log-normal distribution.

The KS-test was only performed for the Dirac quality distribution, and ac-
cording to the KS-test neither the YouTube sample nor the Hollywood sample

HEstimated using 10,000 samples.
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was drawn from this distribution (both resulted in a p-value of almost 0).

To summarise, the Dirac model does not fit the data as good as a lognormal
distribution. Assuming different quality distributions might provide a better
fit, although I do not expect that. But since I couldn’t perform the KS-test
for the other distributions because of computational limits, I remain somewhat
inconclusive on this point. Still, the distributions seem to capture the qualita-
tive behaviour of both markets reasonably well, and is in agreement with the
experiments from Salganik et al. (2006). Until some theoretical foundation is
found for the log-normal distribution, incorporating social influence, and show-
ing results in agreement with Salganik et al. (2006), the suggested distributions
have a better theoretical foundation.



Chapter 5

Conclusion

The model considered in this thesis is based on a ‘rich-get-richer’ effect. Ba-
sically, this means that popular items tend to become increasingly popular.
However, I allow for quality of items to play a role in popularity. The model
thus incorporates both a ‘rich-get-richer’ as well as a ‘good-get-richer’ effect.
The balance between these two effects is expressed as the amount of social in-
fluence. With more social influence, the first effect becomes more important,
and with less social influence, the latter effect becomes more important.
The main findings can be summarised in four brief points:

e Uncertainty rises with quality ¢ and social influence A.
e Inequality rises with social influence A.

e Popularity follows, in theory, a power law of the form P(k) ~ k—(1+1/%)
asymptotically. A lognormal distribution is a better fit for empirical data
however.

e On-line markets seem more volatile, and show more social influence than
traditional markets.

The last point is a broader interpretation of the difference between the
YouTube and the Hollywood market. The first two points are confirmed empir-
ically by Salganik et al. (2006), and have consequences for producers of books,
songs and movies. The model considered here might serve as a theoretical jus-
tification of the results found by Salganik et al.. Based on a simple assumption
it shows qualitatively similar behaviour, and ranges from an exponential dis-
tribution to a power law distribution, smoothly interpolating between the two,
depending on the amount of social influence.

The model considered here also has a relevance for growing networks. It
can be used as an interpolation between the two extremes suggested by Albert
and Barabasi. The model considered here also might serve as an alternative
to the competitive fitness model of Bianconi and Barabasi (2000). The model
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of Pennock et al. (2002) is the same if we assume a Dirac quality distribution.
Because of the social influence A, vertices can attract edges at a higher rate if
their quality is higher. This might lead to a network topology different from the
ones generated by other models. Properties such as the clustering coeflicient,
average path length and the size of the largest connected component are of
interest. These topics might be investigated in future research, and are not yet
analysed by Pennock et al. (2002).

The theoretical distribution of popularity is not confirmed by the data
however, and a lognormal distribution provides a better fit. One possibility
for obtaining a lognormal distribution is through multiplicative growth (see
Mitzenmacher (2003) for example). Incorporating the idea of a social influence
parameter A into such a model might yield a qualitatively similar result (in-
creasing uncertainty and inequality with social influence), yet a better fit to the
empirical data. Whether that is the case needs to be investigated.

We find a substantial difference in both volatility and social influence be-
tween YouTube and Hollywood. The YouTube market has more social influence
and is more volatile than the Hollywood market. The difference might suggest a
broader distinction between on-line markets and traditional markets. It would
be interesting to see how other on-line markets such as Amazon.com®, iTunes?,
Flickr? and SourceForge* would fit to this model. It would be especially inter-
esting to compare them to their traditional counterparts, to see whether on-line
markets in general are indeed more volatile and have a higher social influence.

The ease and speed of on-line communication—not only via e-mail or chat-
ting, but also through the reported number of views—is probably partly respon-
sible for the high social influence for the YouTube market. This sets it apart
from the Hollywood movies, where individual preferences and quality seem to
be somewhat more prevalent, although social influence is still quite high.

The prevalance of social influence contrasts with the interpretation given
by Anderson (2007) in the popular business book The Long Tail. He suggests
that individual users have thousands of ‘niche’ items available to them in on-line
markets such as YouTube, iTunes or Amazon, which begets the possibility for
unique preferences and taste. So people can express themselves more individu-
ally than ever before. Or so Anderson suggests.

The analysis done here, however, suggests the opposite. Indeed, the markets
available on-line are far larger and more diverse than any traditional bookstore,
music store or movie theatre. But internet users do not seem to follow their own
preferences or individual taste, but are mostly guided by the choices of others.
The internet does not seem to increase individualism, but to increase herding
behaviour.

Still, the sheer amount of choice makes it possible for users to follow their

Thttp://www.amazon.com

2http://www.apple.com /itunes/

3http://www.flickr.com

4http://sourceforge.net/, see Hunt and Johnson (2002) for a quick overview of the down-
load distribution. It is reported to follow a power law, but this is based on an analysis of only
30 days.
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own choice, but it seems only few actually do. So when Anderson claims that
‘going on-line’ will “transform entire industries—and the culture—for decades
to come” (Anderson 2007:26) he might have a point. But it is higher social
influence and higher volatility, rather than a materialising wider range of choice
as Anderson believes, that might warrant such a dramatic claim.

It is worth investigating why on-line settings might have a higher social
influence. One of the reasons, no doubt, is that the number of downloads, views
or sales is often presented on the webpage. That figure presents other users with
the idea that a certain item is more popular than others. It informs them of
the choices others have made. Secondly, fora and commentary inform users of
what others think about an item. Thirdly, people can easily refer their friends
or colleagues to a movie they've just seen, or a song they’ve just heard. In
traditional markets this depends much more on face-to-face contact. What the
magnitude of the effects of these various principles are, makes an interesting
research topic.

When markets go on-line, producers should be prepared to take the increase
in risk into account. Higher social influence produces higher inequality and
higher uncertainty. As would be expected by most people, the first few views
or sales thus might trigger a reinforcing process of increasing popularity. Some
books might break all records, while others remain on the shelf, and it becomes
harder to predict which books that will be.



Appendix A

Data Collection

We collected the YouTube data in two stages. First we collected data on 23
December 2007, and then on 30 December 2007 once again. This way we could
estimate whether popular movies would have a higher download rate.

A.1 Technical Information

Collection of the data was done through the YouTube API'. They provide an
XML response based on an HTTP request. For example, we send a regular
HTTP/1.1 request to

http://gdata.youtube.com/feeds/api/videos/dMHObHeiRNg

where dMHObHeiRNg is the identification string of a YouTube movie. This iden-
tification string can consist of the characters [A-Z], [a-z], [0-9] and _. We
then get an XML response which looks roughly as following;:

<entry>
<id>http://gdata.youtube.com/. ../dMHObHeiRNg</id>

<published>2006-04-06T14:30:53.000-07:00</published>

<yt:statistics viewCount="72109974"/>
<gd:rating ... average="4.65"/>

</entry>
where we have included only the entries relevant to our inquiry. The related
movies can be retrieved through a request to

http://gdata.youtube.com/.../dMHObHeiRNg/related

1 Application Programming Interface. This means that we have a number of functions
available which we can query for information.
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with a response similar to

<feed>
<id>
http://gdata.youtube.com/.../dMHObHeiRNg/related
</id>
<entry>
<id>
http://gdata.youtube.com/.../QjA6faZF1A8
</id>
</entry>
<entry>
<id>
http://gdata.youtube.com/.../vr3x_RRJdd4
</id>
<entry>
<entry>
<id>
http://gdata.youtube.com/.../NI17GctQfWM
</id>
</entry>
</feed>

These related movies were then added to the queue. We picked items in
front of the queue with multiple threads. So, information for multiple movies
and related movies could be obtained simultaneously. This speeded the process
up, and increased the rate of movie information retrieval from around 0.7 items
per second to about 2 items per second. This program? was written in C#.

One week later we ran another program, this time revisiting the movies
which we downloaded a week before. This is simply a replication of the first
process, but then the queue is filled with the movies which we already obtained,
instead of the queue being filled ‘on the fly’. We also programmed this in C#.

A.2 Data set

The data set consist of eight columns in total
movielID viewcount rating age viewcount2 rating2 age2 differ

where the second variables (viewcount2, rating2 and age2) contain the in-
formation from our second information retrieval. The age is a floating point
number indicating the number of days between the date it was uploaded and
the date we retrieved the information. The rating can vary from 0 to 5 and the

2Source code of the program is available upon request.
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view count is simply the number of times the movie was viewed. The variable
differ is simply the average number of downloads per day in between. So

differ = (viewcount - viewcount2)/(age2 - age)

This data is stored in a standard ASCII text file, so that it can be loaded into
various programs, such as R for statistical analysis and GNUPlot for plotting. In
total we collected information on n = 200,201 movies.

The data on Hollywood movies was collected from the website The Mowvie
Times3. The data was transformed to a standard ASCII text file containing the
title of the movie, the opening revenue, the total revenue, the theatres in which
it played, the number of weeks in the top 60 and the studio. This totalled to
n = 2615 movies.

Shttp://www.the-movie-times.com
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Appendix B

Numerical Computations

Most of the equations considered here are quite complex. That is, we need to
evaluate the incomplete Beta function B with non standard parameters and
the confluent hypergeometric function of the second kind U. These are just
the functions relevant to the probability density function (pdf), while we also
need the cumulative distribution function (cdf) for the KS test, which involves
other complex functions. Then, in order to estimate our parameters, we need
to evaluate the log likelihood, and numerically obtain a maximum. Most of this
work was done in the statistical program R.

B.1 Function Evaluation

In R we have available the package gs1, which is the GNU Scientific Library. In
that package, several functions are available, among which are the incomplete
Beta function and the hypergeometric function.

B.1.1 Incomplete Beta function

Unfortunately, the incomplete Beta function B(z,a,b) only accepts parameters
for which 0 < x < 1, and in our case x < 0. So this function cannot be used
straigth away. But, the incomplete beta function may also be written as

B(z,a,b) = a ‘2% Fi(a,1 —b,a+ 1,2),

where 2 F} is Gauss’s hypergeometric equation(Abramowitz and Stegun 1970:eq.
6.6.8). The o F} function is available from the gs1 package as hyperg 2F1, which
converges only for |z| < 1, or for k& > 2m(A—1)/A. So, in order to obtain results
for k < 2m(A — 1)/X we numerically integrated

/ t7 11 — 1)’ e,
0

with the myintegrate function of the elliptic package, which can handle
integration over a complex domain.
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B.1.2 Hypergeometric Equation

The hypergeometric equation

1 (e o)
U(a,b,z) = ) / e #eT(1 4t)bm e,
0

T(a)

is implemented as hyperg U in the gsl package. Again, evaluation is limited,
and for too small z, this function does not compute. Since b = 1, we can use
the approximation (Abramowitz and Stegun 1970:eq. 13.5.9)

1
U(a,1,2) = —=——[log(z) + ¥(a)] + O(|zlog z|),
(a)
where t(a) is the digamma function which is the derivative of the logarithm of
the gamma function

¥(a) = - logT(a)

B.2 Numerical Maximisation

R provides a standard algorithm to maximise likelihood. This algorithm is
the mle function. We used the algorithm for the boxed constraints developed
by R. H. Byrd, P. Lu and Zhu (1995) and implemented in mle. This algorithm
allows us to specify lower and upper boundaries for the parameters. We used
this algorithm for estimating the parameters for all models. We used simplified
log likelihood as stated in equations 3.1, 3.2 and 3.3 for maximising.

The biggest problem is that there’s no guarantee that we have actually found
a global minimum. So, we should interpret the estimated parameters with some
caution.

B.3 Cumulative Distribution Functions

For all but the Dirac distribution we needed numerical integration. This was
provided by the integrate function of the stats package. The cdf for the Dirac
distribution can be written as

_ m(i-) )
]P(K>k)—1—(m> )

but the other integrals cannot be simplified that much. Hence, we have numer-
ically integrated the pdf’s in order to obtain results for the cdf’s.



Appendix C

Mathematics

Some more precise derivations of the results are given here. More specifically,
we show how we got from the differential (equation 2.3) to the uncertainty
distribution (equation 2.5) and how to derive the Lorenz curve and the Gini

coefficient.

C.1 Differential Equation

We start off by taking equation 2.3, which is

6ki _ (1 _)\)m@-

k;
ot tu '

P
+t

First we solve the homogeneous equation

ki ki
0 _

ot t’
we divide by k; and multiply by 0t and thus arrive at

1 1
—0k; = A-0t.
kiﬁ )\t(?

1 1
Sk =\ [ e,
/ k; /\/ t

log k; = Alogt + Cy.

Now we integrate

and obtain

where Cj is some constant. Taking the exponential we get

ki = exp(Alogt + Cp) = t*C,

where C' = exp Cy is some positive constant. This is the solution for the ho-
mogenous equation. Now instead of just having C' as a constant, we take C' to
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be dependent on ¢ and write k; = t*C(t). If we differentiate it should equal C.1.
The derivative of k; with respect to ¢ is \#*~1C(t) + t*C’(t), so we obtain

ma;

MATLO) + M (1) = (1= N) ”

ki
A
+ P

where C’(t) denotes taking the derivative of C(t) with respect to t. If we sub-
stitute in our solution k; = t*C(t) this becomes

A

MATIO) + 20" (1) = (1 — N\)—— + /\ﬂ,
tp t

or

Aﬁ*cay+ﬁday=u—Aﬂ%?+AR40ay

Since both sides now have M*~1C(t) we subtract this from both sides obtaining

moi

() = (1 - N) ”

)

solving for C’(t) gives us

C'(1) = (1 = N

which since [ C’(t)dt = C(t) we solve for C(¢) and hence integrate both sides,
which results in

ct) = [o-NgEs

= (1 —)\)m—@/t_(’\“)dt
I

mgbl —t=

woooA

= (- + K,

where K is some constant. Now we have obtained a solution for C(¢) which we
can substitute in our equation k; = t*C(t) which becomes

ki) :tkﬂ—M%?4q+K
= (1- /\)%/\@ + Kt (C.2)

Since items are being introduced without any votes at their time of introduction
t;, we have k;(t;) = 0. We use this to solve for our constant K and obtain

—mae;

B

(1-2X) + Kt} =0,



62 APPENDIX C. MATHEMATICS

or
K=(1-) m¢; :
AL

which we substitute back into C.2 which results in our final solution

—mao; me; A

ki) = (1-\N—=— 1—-A t
0 = G-I
A
—mae; me; [t
= (1-=-2MX\ 1—A —
( ) BA i ) A (t)

— [(;)k - 1] (1- A)’Zil’ (C.3)

which yields equation 2.4.

C.2 Uncertainty Distribution

Let X; 4 be the number of votes and 7; 4 be the time of introduction of a random
item having quality ¢ after time ¢. So, after time ¢ we draw from the population
of items having quality ¢ one random item, and denote the number of votes of
that item by X; 4 and the time of introduction of that item by X; 4. Then we
are looking for the solution P(X; 4 < k).

Since we are considering items which have the same quality ¢, all items grow
in the same fashion. Items differ in the number of votes they have received, only
because they were introduced at a different time. So the number of votes and
the time of introduction are directly related to one another. Using solution C.3
we get that for an item that was introduced at time 7; 4 has

e[ oo

votes. Hence we can rewrite the inequality as

Xt,d) < k

[(%)A—ll (1—)\)75—;4\j < k

¢\ kA
(ﬁ) S Toome

(Ly kA + (1 — A)ymé

A

Tt b (I —=X)mg
N K+ (1— Nmé
T S T A= me

(1=Nme \*
e 2 (kAu+<1—A>m¢) -

(C.4)
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Using this we can write

The introduction of new items happens at a uniform rate. That means after
time ¢, items could have been introduced with equal probability from time 1
until ¢. After time ¢, ¢ 4+ s items exist. The probability that an item with
quality ¢ was introduced at a certain time is 1/(t + s) (proportional to the
probability at which an introduced item has quality ¢). The probability that
an item was introduced before a time ¢, or P(7y,4 < ¢) =1 — . We can thus
write

P(Xt7¢ < k) = P (Tt)d; > (k/\‘u(i_(l/\)_n/;\(l;mgb) x t)

B 1_( (1 - Nme )i ¢
- Mt (- Nmo) t+s

Now taking the limit ¢ — oo we obtain the stationary distribution

: (L-Nmé  \* t 1-Nme \*
hm1_<k)\u+(1—/\)m¢> t+s_1_(k/\u+(1—)\)m¢) ’

since lim;_, oo H_Ls = 1. This gives use P(X, < k) where X4 is the number of
votes of a random item having quality ¢ after a long enough time period. Since
this is the cumulative distribution function (cdf) and we would like to have the
probability density function (pdf), we differentiate to k& and get

9 1-Nm¢ \*
ok [1 - (k)\,u +(1- A)mqﬁ)
=—((1- /\)m¢)§(—1/)\)(k)\u + (1= Nme) Y xp
= (1 = Nme)* (kAp + (1 — N)yme) /A1,

which gives equation 2.5.

C.3 Expectation

Let X, again be the number of votes for a random item having quality ¢. The
expected number of votes for a random item can be calculated as

E(Xy) = /0 " P(X, = k),
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or
00

ku((1 = \m@)X (kAu + (1 — \ymg) "/ 1 dk

=
>
N
I
S—

= p((1 = Nme)* /OOO k(kAp+ (1 — Aymg) =/ ~1dk.

The integral is solved through integration by parts. Using the substitution
v = kAy we can write
(A + (1= \)me)~3

/(k/\u—l—(l—/\)mqs)_i‘ k= — - .

With integration of parts the integral thus becomes
(A + (1= \)me)~3
H 0
- /°° (kA + (1= Nmg) ™%
0 K

oo

/Ook(k:/\u—i—(l—)\)mgb)*%*ldk _ _k
0

)

where the first part evaluates to 0. Evaluating the second part gives
(kM + (1 = Nmg) =1+
pr(A=1) 0

using the substitution v = kAp again. Since —1/A+1 < 0 for 0 < A < 1 this
evaluates to

o0

3

(1= X)mg) 1A+
p*(1 = A)

Simplifying gives
(1 = Nme((1 — \)ymg)~/*

P2 (1= A)
_ o mg((1 = \yme) 1/
- = .

Hence,
mé((1 — \ymg)~'*
112
me
—. C.5
. (C.5)

The results for the popularity distribution can be obtained as E(X) = [ ¢E(X)d¢.
Simplifying this gives

E(Xs) = p((1—XNmg)>

m [ Gmax

E(X) = Wl op(¢)de.

Since the integral simply gives the mean quality u, this yields E(X) = m.
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C.4 Variance

The variance can be obtained using Var(Xy) = E(X7) — E(X4)* where E(X)?
can be obtained from equation C.5. So we will now calculate IE(X;) This is
the integral

u((1 = Nyme)> /OOO B2 (kA + (1 — Nyme) VA1 dk.

Again we will use integration by parts. Integration by parts once results in
kA + (1 — —1/A
0 K
By integrating by parts again we obtain for A < 1/2

L om22(1 — T VA
L((1 — Ay 2200 =N = Nmo) 1

dk.

pP(1 = 27)
We simplify and obtain
2m2¢?(1 — \)
— (C.6)
p?(1 = 27)
Hence the variance is given by
2m2¢2(1 — A 2
Var(h) = 2= A _(mé
2i-2)  \n
m2¢2
T -2y
Again Var(X) = E(XQ) E(X)?2, where X is now the number of votes of a
random item. Since E(X) = m, we can write this as
d)max
Var(X / / Xy = k)dkdp — m?>.

We already obtained the solution of [ k*P(X, = k) in equation C.6. Hence, we

can write this as
P om2(1-N)
/ P(¢)md¢ —m7,

Var(X)

o 2mP(1 =) Pmax 2
= m/mm ¢ P(¢)d¢—m .

The integral [ #?p(¢)d¢ is simply the second moment of the quality distribution.
The results for the various quality distribution can thus easily be obtained. A
more insightful formulation can be given if we realise that the variance of quality,
given by o can be given by [ ¢?p(¢)d¢ — p?. Plugging this in, and simplifying
gives
m2(20(1 — \) + u?)
pA(l=2x)
where o is the variance of the quality distribution.

Var(X) = (C.7)
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C.5 Lorenz Curve and Gini Coefficient

I show for the uncertainty distribution how the Lorenz Curve and Gini coefficient
are derived. If we take ¢ = u = 1 the results for the Dirac quality distribution
can be seen. First, we need to calculate the number of votes K at which the less
popular p items are, or P(X < K) = p. The cumulative distribution function
(CDF) of equation 2.5 is

P(X < K)=1— (mp(1 — A\)> (KA + mo(1 — \) >
So we need to solve
1= (mo(1— \)X (KM +mp(1— )3 =p

for K. Doing so yields

(KA\p+me(l=A)"% = (1-p)(me(1—X)">
Exi+mo(1—=2) = (1-p) me(l-N)

K\ = (1=p) 7 'mg(1 —X) —me(1 — N)

Kxp = mo(1-N)((1-p)—1)
~ ome(1=N)((1-p) -1

K = " , (C.8)
The Lorenz curve is defined as
[ KP(X = E)dk

The denominator is simply the mean, which is calculated in section C.3, and is
me/u. Using similar methods as in section C.3, fOK kP(k)dk can be written as

(1=X)me = (1= N)mg)> (KA + (1= N)me) "> (Kp + (1 — \)me)
n(l =X '
Substituting K as in equation C.8 and simplifying yields

T—ja (1 —p) = p(1 - ),

which after dividing by the mean m¢/u yields the Lorenz curve
1-(1-p)'=pl-N)
A

The Lorenz curve is thus independent of quality ¢ and the mean number of
votes m. The integral fol L(p)dp is needed for the Gini coefficient and equals

L(p) =

A—1
2N —2)
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Then the Gini coefficient, which is defined as

1
2 [ o
0

becomes
A-1 1

1l—-—=—.
A—2 2—-2
This result is valid for both the uncertainty distribution as well as the inequality
distribution assuming a Dirac quality distribution.
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