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Detecting communities in large networks has drawn much attention over the years. While modularity remains
one of the more popular methods of community detection, the so-called resolution limit remains a significant
drawback. To overcome this issue, it was recently suggested that instead of comparing the network to a random null
model, as is done in modularity, it should be compared to a constant factor. However, it is unclear what is meant
exactly by “resolution-limit-free,” that is, not suffering from the resolution limit. Furthermore, the question
remains what other methods could be classified as resolution-limit-free. In this paper we suggest a rigorous
definition and derive some basic properties of resolution-limit-free methods. More importantly, we are able to
prove exactly which class of community detection methods are resolution-limit-free. Furthermore, we analyze
which methods are not resolution-limit-free, suggesting there is only a limited scope for resolution-limit-free
community detection methods. Finally, we provide such a natural formulation, and show it performs superbly.
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I. INTRODUCTION

The last decade has seen an incredible rise in network
studies, and will likely continue to rise [1,2]. Besides the
study of properties, such as degree distributions, clustering
coefficients, and average path length [3], many complex
networks exhibit some modular structure [4,5]. These com-
munities might represent different functions, or sociological
communities, and have been successfully studied on a wide
variety of networks, ranging from metabolic networks [6]
to mobile phone networks [7] and airline transportation
networks [8].

One of the most popular methods for community detection
is that of modularity [9]. The past few years suggestions
have been made to extend or alter the original definition,
for example, allowing detection in bipartite networks [10],
networks with negative links [11], and dynamical networks
[12]. Although modularity optimization seems to be able
to accurately identify known community structures [13], it
suffers from an inherent problem, namely a resolution limit
[14], which affects the effectiveness of community detection
[15]. This resolution limit prevents detection of smaller
communities in large networks, although this effect can be
mitigated somewhat by a so-called resolution parameter [16],
which can be related to time scales of random walks on
the network [17]. Another approach adds self-loops in order
to circumvent this resolution limit problem [18], and can
similarly be related to the random walk approach [17]. The
use of such resolution parameters enables the investigation of
community structures at various levels of description. The
analysis of which levels of description are meaningful or
relevant then becomes important, but we will not investigate
this issue here.

Recently, a new method has been suggested that would not
suffer from this resolution limit [19]. For showing a method
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suffers from a resolution limit a few clear cases suffice, but the
opposite seems more difficult to argue. That is, although there
is no problem for the cases analyzed, perhaps more complex
cases will show some issues not yet considered. Hence, a
proper definition of resolution-limit-free is called for, which
we will develop in this paper. Furthermore, the question then is
what methods will suffer from this resolution limit and which
not.

We will analyze this question within the framework of the
first principle Potts model as developed by Reichardt and
Bornholdt [20]. Various methods can be derived from this
first principle Potts model, among them modularity, and we
will briefly examine them. We will suggest a very simple
alternative, which we term the constant Potts model (CPM).
It can be easily shown that the CPM is resolution-limit-free
according to our definition, but it will follow immediately
from the more general theorem we will prove. Arguably,
the CPM is the simplest formulation of any (nontrivial)
resolution-limit-free method, and can be well interpreted.

In the next section we will briefly examine this first principle
Potts model, review some models that can be derived from
it, and introduce the CPM. We will then briefly explain
the problem of the resolution limit when using modularity,
followed by the introduction of the definition of a resolution-
limit-free method (i.e., not suffering from a resolution limit),
and we will show some general properties of resolution-
limit-free methods. We will then prove which methods are
resolution-limit-free and analyze which are not. Finally, we
show the CPM method performs superbly.

II. POTTS MODEL FOR COMMUNITY DETECTION

First, let us introduce the notation. We consider a connected
graph G = (V,E) with n = |V | nodes and m = |E| edges.
The adjacency matrix Aij = 1 if there is an (ij ) edge, and 0
otherwise. For weighted graphs the weight of a link is denoted
by wij , while for an unweighted graph we can consider wij = 1.
We denote the community of a node i by σi .
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In principle, links within communities should be relatively
frequent, while those between communities should be rela-
tively rare. Building on this idea, we will (i) reward links
within communities and (ii) penalize missing links within
communities [20]. In general, this can then be written as

H = −
∑
ij

(aijAij − bij (1 − Aij ))δ(σi,σj ), (1)

where δ(σi,σj ) = 1 if σi = σj and zero otherwise, and with
some weights aij ,bij � 0. Minimal H correspond to desirable
partitions, although such a minimum is not necessarily unique.
The choice of the weights aij and bij are important, and have
a definite impact on what type of communities are detected.

A. Previous methods

In the current literature at least four different choices
exist (and presumably some other methods may be rewritten
as such), leading to four different methods for detecting
communities. We will briefly explicate these four different
approaches.

Reichardt and Bornholdt (RB) set aij = wij − bij and bij =
γRBpij with a new variable pij that represents the probability
of a link between i and j , known as the random null model.
Working out their choice of parameters, we arrive at

HRB = −
∑
ij

(Aijwij − γRBpij )δ(σi,σj ). (2)

One of the most used null models is the so-called configuration
model, which is pij = kikj /2m, where ki = ∑

j Aji is the
degree of node i. By using this null model, and setting
γRB = 1 we recover the original definition of modularity [9].
Independent of the exact choice of the null model pij , it can
be shown the method will suffer from a resolution limit [16],
which thereby also holds for modularity [14].

Another approach by Arenas, Fernándes, and Gómez
(AFG) uses self-loops in order to try to circumvent the
resolution limit [18]. They do not explicitly derive their model
based on the first principle Potts model, but it can easily be
done. If we set aij = wij − bij and bij = pij (r) − rδ(i,j ),
with pij (r) = (ki+r)(ki+r)

2m+nr
and δ(i,j ) = 1 only if i = j and zero

otherwise, we arrive at their model (up to a multiplicative
scaling)

HAFG = −
∑
ij

((Aijwij + rδij − pij (r))δ(σi,σj ). (3)

The null model pij (r) is here defined as the configuration
model on the graph where a self-loop with weight r is added
to each node.

Ronhovde and Nussinov (RN) do not include any random
null model, in order to avoid issues with the resolution limit,
and in general set aij = wij and bij = γRN (although for
specific networks, such as with negative weights, they allow
some minor changes). Working this out we obtain

HRN = −
∑
ij

(Aij (wij + γRN) − γRN)δ(σi,σj ). (4)

Finally, the label propagation method [21] can be shown
to be equivalent to the Potts model −∑

ij Aijwij δ(σi,σj ) [22],
which corresponds to the weights aij = wij and bij = 0. This

is the least interesting formulation, since there is only one
global optimum, namely all nodes in a single community,
which is trivial. However, the local minima could be of some
interest.

It is not surprising then that these four different formulations
share certain characteristics for some choice of parameters.
The RB model is equivalent to the RN model up to a multiplica-
tive constant by using an Erdös-Renyı̀ (ER) null model, that is,
pij = p and by setting γRN = γRBp/(1 − γRBp). For γRN = 0
the RN model obviously reduces to the label propagation
method. Finally, for the AFG model, when using r = 0 we
retrieve the modularity (i.e., the RB model with configuration
null model and γRB = 1).

B. Constant Potts model

We introduce an alternative method, that uses slightly
different weights. By defining aij = wij − bij and bij = γ ,
we obtain a version that is similar to both the RB and the RN
model, but is simpler and more intuitive to work with. If we
work this out, we obtain the rather simple expression

H = −
∑
ij

(Aijwij − γ )δ(σi,σj ). (5)

Let us call this the constant Potts model (CPM), with the
“constant” here referring to the comparison of Aij to the con-
stant term γ . It is clear that this is equivalent to the RN model
for unweighted graphs by setting γ = γRN

1+γRN
and ignoring the

multiplicative constant. Furthermore, it is equal to the RB
model when setting γ = γRBp for the ER null model. By
setting γ = 0 we retrieve the label propagation method. Also,
it is highly similar to an earlier Potts model suggested by
Reichardt and Bornholdt [23].

If we denote the number of edges1 inside community c by
ec = ∑

ij Aijwij δ(σi,c)δ(σj ,c), and the number of nodes in
community c by nc = ∑

i δ(σi,c), we can rewrite Eq. (5) as

H = −
∑

c

ec − γ n2
c . (6)

In other words, the model tries to maximize the number of
internal edges while at the same time keeping relatively small
communities. The parameter γ balances these two imperatives.
In fact, the parameter γ acts as the inner and outer edge density
threshold. That is, suppose there is a community c with ec edges
and nc nodes. Then it is better to split it into two communities
r and s whenever

er↔s

2nrns

< γ,

where er↔s is the number of links between community r and
s. This ratio is exactly the density of links between community
r and s. So, the link density between communities should be
lower than γ , while the link density within communities should
be higher than γ . This thus provides a clear interpretation of
the γ parameter.

1Or technically, twice the number of edges in an undirected graph,
or the total weight in a weighted graph.
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FIG. 1. (Color online) The problem of the resolution limit with modularity is usually demonstrated on a ring network of cliques. The
cliques are as densely connected as possible, and as sparsely connected between them, while still retaining a connected graph. The resolution
limit is said to arise because it will merge cliques depending on the size of the network. In fact, methods that do not suffer from the resolution
limit, that is, resolution-limit-free methods, may merge these cliques also. However, the distinguishing fact between resolution-limit and
resolution-limit-free methods is that the first will detect smaller subcommunities when applied to the subgraph (i.e., not the same subpartition),
while the latter will not detect smaller subcommunities (i.e., the same subpartition will remain optimal on the subgraph). Of course, whether
the communities should consist of only cliques or of multiple joined cliques will still depend on the actual resolution of the method. For CPM
this resolution parameter is designated by γ . So, for a particular value of γ the cliques will be separated, while for another value they will be
merged. When analyzing the property of resolution-limit-free more in detail, we will investigate this ring of clique network more closely. The
actual weights aij and bij need to be the same on isomorphic graphs, which restricts the possible number of different weights. We denote these
different possibilities with α for the present links (thicker lines) and β for the missing links (thinner lines). Please refer to the main text for
further details.

In general, where γ = minij Aijwij the optimal solution
is the trivial solution of all nodes in one big community. On
the other extreme, when γ = maxij Aijwij , it is optimal to
split all nodes in communities, that is, such that each node
forms a community by itself. In fact, communities of one
node only exist when γ = maxij Aijwij , since otherwise it will
always be beneficial to put the node in one of its neighbors’
communities. Hence, for practical purposes minij Aijwij �
γ � maxij Aijwij .

III. RESOLUTION LIMIT

Traditionally the resolution limit is investigated by an-
alyzing the counterintuitive merging of communities [14],
for example cliques or some smaller communities that are
only sparsely interconnected as displayed in Fig. 1. The
RB model with a configuration null model for example will
merge two neighboring cliques in this ring network of cliques
when [16] γRB < q/(nc(nc − 1) + 2), where q is the number
of cliques and nc is the number of nodes of a clique. Since the
number of cliques q is a global variable, it shows modularity
might be “hiding” some smaller communities within larger
communities, depending on the size of the network. Indeed
in [14] it was suggested to look at each community to consider
whether it had any subcommunities. Some different, though
related, problems with modularity were noticed in [24] and
more recently in [25].

The AFG model considers self-loops of a certain weight
to overcome this problem [18]. Yet the model still depends
on a null model, and so it is not surprising to find that the
merging still depends on some global parameters. The implicit
inequality for merging two cliques in the ring network of
cliques is q > nc(nc − 1) + 2 + ncr , which for γRB = 1 and
r = 0 matches the previous result. Although the resolution
parameter r might be used to investigate the community

structure at various scales similar to the γRB resolution
parameter, it does not fundamentally address the issues of
the resolution limit.

The RN model, on the other hand, will only join two cliques
when [19] γRN < 1/(n2

c − 1), which does not depend on the
number of cliques q, and depends only on the local variable
nc, so is argued not to suffer from any resolution limit. For
the CPM suggested here, we arrive at the condition γ < 1/n2

c ,
which also does not depend on the number of cliques q and
can hence also said to be resolution-limit-free. More general,
CPM favors to cluster r consecutive cliques instead of r − 1
at the point when γ < 2/(r(r − 1)n2

c).
However, it remains somewhat unclear what is meant ex-

actly by resolution-limit-free in the above discussion, and the
label resolution-limit-free requires a more precise definition.
Consider for example that we take away the dependence on
the number of links in the configuration null-model, so that
we take pij = kikj . Notice that this only corresponds to a
multiplicative rescaling of γRB by 2m. Revisiting the case
above, we come to the conclusion that cliques are separated
whenever 2γRB > (nc(nc − 1) + 2)−2, which unsurprisingly
no longer depends on any global variables. By the argument
employed previously, the method should be resolution-limit-
free.

Not all problems have disappeared however. Suppose we
take the subgraph consisting of only two of these cliques. We
analyze when the method would merge the two cliques in
this subgraph, which is the case whenever 2γRB < (nc(nc −
1) + 1)−2. Even though neither inequality depends on any
global variables, a problem remains. Combining the above
two inequalities, we obtain that whenever

(nc(nc − 1) + 2)−2 < 2γRB < (nc(nc − 1) + 1)−2,

the method will separate the cliques in the larger graph, yet
merge them in the subgraph.
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The above discussion motivates us to consider the following
definition of a resolution-limit-free method. The general idea
is that when looking at any induced subgraph of the original
graph, the partitioning results should not be changed. In
order to introduce this definition, let H be any objective
function (which we want to minimize), we then call a partition
C for a graph H-optimal whenever H(C) � H(C ′) for any
other partition C ′. We can then define resolution-limit-free as
follows.

Definition 1. Let C = {C1,C2, . . . ,Cq} be a H-optimal
partition of a graph G. Then the objective function H is called
resolution-limit-free if for each subgraph H induced byD ⊂ C,
the partition D is also H optimal.

Furthermore, we introduce the notion of additive objective
functions.

Definition 2. An objective function H for a partition C =
{C1, . . . ,Cq} is called additive whenever H(C) = ∑

i H(Ci),
where H(Ci) is the objective function defined on the subgraph
H induced by Ci .

If we have an H-optimal partition C for an additive
resolution-limit-free objective function H, we can replace
subpartitions of C by other optimal subpartitions.

Theorem 1. Given an additive resolution-limit-free objec-
tive function H, let C be an H-optimal partition of a graph G

and let H ⊂ G be the induced subgraph by D ⊂ C. If D′ is
an alternative optimal partition of H then C ′ = C \ D ∪ D′ is
also H optimal.

Proof. Define C ′ and D′ as in the theorem. By additiv-
ity, H(C ′) = H(C \ D) + H(D′), and by optimality H(D′) �
H (D). Since also H(C) = H(C \ D) + H(D) we obtain
H(C ′) � H(C), so C ′ is also optimal. �

Although, this might seem to contradict the NP-hardness
of community detection methods, this is not the case. It states
that when there are two optimal partitions, any combination
of those partitions are optimal, so in a certain sense, they are
spanning a space of optimal partitions. It does not say whether
such a partition can be easily found. Also, there might be
two optimal partitions that cannot be obtained by recombining
them, because all communities partly overlap with each other.

It is also possible to prove that a complete graph Kn with n

nodes is never split (unless into all nodes separately).
Theorem 2. Given a resolution-limit-free objective function

H, the H-optimal partition of Kn for all n is either only one
community, namely all nodes, or n communities consisting
each of one node.

Proof. Assume on the contrary there is an optimal partitionC
of Kn such that 1 < |C| < n. Then for anyD ⊂ C the subgraph
H induced by D is a complete graph. But by assumption, D
is then not optimal, and by resolution-limit-free, C is then
not optimal. Hence, inductively, the theorem must hold for
all n. �

Also notice that a resolution-limit-free method will never
depend on the size of the network to merge cliques in the ring
of cliques network. This can be easily seen from the fact that
a subgraph of a large ring of cliques network also appears in
a smaller ring. So if the method would merge cliques in some
large graph, by the resolution-limit-free property, it would also
need to merge them together in the smaller graph. Hence, the
actual merging cannot depend on the size of the network. In
this sense it captures this prior concept of the resolution limit.

Equipped with this definition, we can analyze the first
principle Potts model further. For example, what conditions
should be imposed on the weights aij and bij in Eq. (1) for the
method to be resolution-limit-free? Would a method that takes
into account the local number of triangles be resolution-limit-
free? Or would it be possible to use the shortest (weighted)
path for example?

We can prove that CPM is resolution-limit-free in this sense,
just like the RN model and the LP model. The CPM model
is also trivially shown to be additive by Eq. (6). Perhaps
it is less obvious, but the RB model is not additive, since
it cannot be defined in terms of independent contributions,
that is, the contribution H(Ci) per community depends on the
whole graph G, instead of only on the subgraph H induced
by Ci . Nor is the RB model resolution-limit-free according
to our definition, regardless of the null model [16], and
hence modularity is not resolution-limit-free. Furthermore,
as we have seen, also when using pij = kikj the model
is not resolution-limit-free. Finally, the AFG model is not
resolution-limit-free either.

Since the CPM model is also related to the RB model
using the ER null model, it is tempting to conclude it is
also resolution-limit-free. Indeed, this might be said to be
the case, if we choose p independently of the graph, that
is, not define it as p = m/n(n − 1), and simply choose it as
some value p ∈ R. However, we then obviously retrieve the
CPM model. This shows that resolution-limit-free methods
are strongly constrained, and there is only a fine line between
resolution-limit and resolution-limit-free methods.

This follows from the more general theorem we will now
prove. For this, we first introduce the notion of local weights.
Again, building on the idea of subgraphs, we define local
weights as weights that do not change when looking to
subgraphs.

Definition 3. Let G be a graph, and let aij and bij as in
Eq. (1) be the associated weights. Let H be a subgraph of
G with associated weights a′

ij and b′
ij . Then the weights are

called local if aij = λa′
ij and bij = λb′

ij , where λ = λ(H ) > 0
can depend on the subgraph H .

Clearly then, the RN and CPM model have local weights,
while the RB and AFG model do not. This definition says
that local weights should be independent of the graph G in
a certain sense. In fact, it is quite a strong requirement, as it
should even hold for a single link (ij ) in the subgraph where
only i and j are included. That means it can not depend on
any other link but the very link itself. Since for missing links,
there is (usually) no associated weight or anything, it can only
be constant. There are some exceptions, such as multipartite
networks, or networks embedded in geographical space [26,
27], where some sensible nonconstant local weights can be
provided. Hence, the RN model and the CPM model are one
of the few sensible options available for having local variables.
We can now prove the more general statement that methods
using local weights are resolution-limit-free.

Theorem 3. The objective function H as defined in Eq. (1)
is resolution-limit-free if it has local weights.

Proof. Let C be the optimal partition for G with community
assignments ci , D ⊂ C a subset of this partition, and H the
subgraph induced by D with h nodes. Furthermore, we denote
by di the community indices of D, such that di = ci for
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1 � i � h and by A′ the adjacency matrix of H , so that
Aij = A′

ij for 1 � i � h. Assume D is not optimal for H ,
and that D∗ is optimal, such that H(D) > H(D∗). Then define
c∗ by setting c∗

i = d∗
i for 1 � i � h and c∗

i = ci for h < i � n.
Then because the result is unchanged for the nodes h < i � n,
we have that

�H = H(C) − H(C∗) = 1

λ
(H(D) − H(D∗)) > 0,

where the last step follows from the locality of the weights aij

and bij . This inequality contradicts the optimality of C. Hence,
for all induced subgraphs H , the partition D is optimal, and
the objective function H is resolution-limit-free. �

The converse is unfortunately not true. Consider a graph G

with some weights aij and bij . Then pick a subgraph H induced
by some subpartition D, and define the weights a′

ij = aij and
b′

ij = bij except for one particular edge (kl), for which we set
a′

kl = akl + ε. Then for some ε > 0, the original subpartition
will remain optimal in H , while the weights are not local.
Since the small change of the weight is only made when
considering the graph H , all other subpartitions will always
remain optimal. Of course, such a definition of the weight is
rather odd, so in practice we will never use it.

Even though the converse is not true, we can say a bit more.
The weights can be a bit different indeed, but there is not
that much room for these differences. We demonstrate this on
the ring network of cliques. The weights can depend only on
the graph, so if G and G′ are two isomorphic graphs, then
aij (G) = ai ′j ′(G′), where i and i ′ are two isomorphic nodes.
Hence, only a number of weights can be different from each
other in the ring network, as illustrated in Fig. 1. All nodes
within a clique are isomorphic, except the node that connects
to other cliques. So, all the edges among those nc − 1 nodes
are similar, and will have the same weight α1. All edges from
these nc − 1 nodes to the “outside” node will have the same
weight α2. Finally, the edge connecting two cliques is denoted
by α3. The missing self-loop for the special outside node is
denote by β2 while the missing self-loop for the other nodes
in the cliques is denoted by β1. Finally, there is (1) a missing
link between the outside node and a normal node denoted by
β3 and (2) a missing link between two normal nodes, denoted
by β4. These weights are illustrated in Fig. 1.

Let us now analyze when the method will not be resolution-
limit-free. Then, the cliques must be merged in some (large)
graph, while for the subgraph consisting of these two merged
cliques, they should be separated by the method. Or conversely,
they should be separated in some (large) graph, but merged in
the subgraph. We can write the Hs for all q cliques being
separate as

Hs = −q(α1(nc − 1)(nc − 2) + 2α2(nc − 1)

− (nc − 1)β1 − β2)

and Hm for merging all two consecutive cliques as

Hm = −q

2
2(α1(nc − 1)(nc − 2) + 2α2(nc − 1) − (nc − 1)β1

−β2 + α3 − β3(nc − 1) − β4(nc − 1)2).

Furthermore, for the induced subgraph H consisting of two
consecutive cliques, we can write H′

s for separating the two

cliques and H′
m for merging them, similarly as before, where

α′ and β ′ are the weights for the subgraph H . Then the method
is not resolution-limit-free if it would merge the two cliques at
a higher level (i.e., when Hm < Hs) yet would not merge them
at smaller scale (i.e., when H′

s < H′
m), or vice versa. Working

out this condition for Hm < Hs (and similarly for Hm > Hs)
gives us

α3 > (nc − 1)(β4(nc − 1) + β3),

while for H′
s < H′

m (and similarly for H′
s > H′

m) we obtain

α′
3 < (nc − 1)(β ′

4(nc − 1) + β ′
3).

Combining these two inequalities for both cases we obtain

α′
3(β4(nc − 1) + β3) < α3(β ′

4(nc − 1) + β ′
3), (7)

α′
3(β4(nc − 1) + β3) > α3(β ′

4(nc − 1) + β ′
3). (8)

where either Eq. (7) or (8) should hold. Hence, only if
the left-hand side equals the right-hand side, it does not
constitute a counterexample. Working out this equality, there
are two possibilities. Either the weights should be local, or the
following equality should hold:

nc − 1 = α3β
′
3 − α′

3β3

α′
3β4 − α3β

′
4

.

Obviously, this again constitutes some very particular case of
nonlocal weights. We can repeat this same procedure for other
subpartitions, and for other graphs, thereby forcing the weights
to be of a very particular kind. This thus leaves little room for
having any sensible nonlocal definition such that the method
is resolution-limit-free.

This means resolution-limit-free community detection has
only a quite limited scope. In fact, the CPM seems to be
the simplest nontrivial sensible formulation of any general
resolution-limit-free method, although there is some leeway
for special graphs (i.e., having some node properties, such
as multipartite graphs). This is not to say that methods
with nonlocal weights (e.g., modularity, AFG, number of
triangles, shortest path, betweenness) should never be used
for community detection at all, they are just never resolution-
limit-free.

IV. PERFORMANCE

In order to assess the performance of the proposed CPM
model, we performed various tests. Using the latest suggested
test networks [13] we find that the CPM model and the
accompanying algorithm is both very accurate and efficient.
More details on the efficient Louvain-like algorithm, the test
procedure and the calculations on the resolution parameters
can be found in the Appendices at the end of this article.

We have examined both directed test networks as well as
hierarchical test networks, where communities exist at multi-
ple levels in the data. Communities become less discernible
for higher values of the parameter μ of having links outside its
community. For hierarchical communities, there are two such
parameters: μ1 for the first level (the large communities) and
μ2 for the second level (the subcommunities). These mixing
parameters allow us to calculate what the inner and outer
densities of communities are. We exploit this fact to calculate
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FIG. 2. (Color online) Performance of various community de-
tection methods in terms of normalized mutual information (NMI)
depending on mixing parameter μ. Results are shown for (1) CPM,
using the calculated resolution parameter γ ∗; (2) the RB model with
an ER random null model (i.e., corresponding to CPM using γ = p);
(3) the RB model with a configuration null model with a calculated
resolution parameter γ ∗

RB; (4) modularity, in other words, the RB
model with a configuration model using γRB = 1; and finally (5) the
Infomap method. The open symbols denote results for n = 103 and
the closed symbols for n = 104.

the proper γ = γ ∗ in order to investigate the performance of
the CPM, and similarly γRB = γ ∗

RB for the RB model using the
configuration null model. This way, the results do not depend
on any particular method to determine the correct parameter,
which represents another challenging problem.

Some of the earlier algorithms and models that showed
excellent performance [28] are the Louvain [7] method for
optimizing modularity, and the Infomap method [29]. In Fig. 2
we have displayed the results for (1) the CPM model; (2) the
RB model using an ER null model (i.e., CPM with γ = p);
(3) the RB model using the configuration null model2 with
“corrected” parameter value γ ∗

RB; (4) the modularity model
(i.e., RB using the configuration null model and γRB = 1);
and finally (5) the Infomap method. We have performed
tests on networks having n = 103 and n = 104 nodes, with
a degree distribution exponent of 2 (with average degree 15
and maximum degree 50) and community size distribution
exponent 1 (with community sizes ranging from 20 to 100).
Per value of μ 100 graphs were used to obtain this result.

It can be clearly seen that CPM performs extremely
well. The difference in performance of the CPM model in
comparison to the RB model using the ER null model is
especially striking. This is not a consequence of the method
being resolution-limit-free or not, but it rather depends on
choosing the correct resolution parameter. Obviously then,
setting γ = p is in general not a very good strategy, and
for general networks one should carefully analyze at which
resolution the network contains meaningful partitions.

2Since we use directed test networks, we use a small adjustment to
use the directed configuration null model [30].

A similar effect also shows for modularity (or the RB
model using the configuration model), such that when γRB

is chosen appropriately (i.e., using γRB = γ ∗
RB) the method

will perform better than at the ordinary resolution γRB = 1.
Indeed, the results of the CPM model and the RB model using
the configuration null model using γ ∗

RB are rather comparable,
although the latter’s performance drops less quickly, and then
outperforms CPM. Interestingly, when we use the ordinary
resolution γRB = 1, it becomes more difficult to detect com-
munities in large networks using the configuration model. This
contrasts with the results when we choose the appropriate
resolution parameter γ ∗, γ ∗

RB and indeed also for the Infomap
method. Indeed it can be shown that the communities should
become more clearly discernible for larger networks when the
community sizes remain similar.

Surprisingly, both methods outperform the Infomap
method, which performed superbly in previous tests [28],
when the appropriate resolution parameter is chosen. This
show that determining the correct or meaningful resolution is
an important issue. This remains a challenging problem, and
various methods have been proposed to do so [4], for example
by looking at the stability of multiple (randomized) runs of an
algorithm [19,31], by looking for large ranges of the parameter
over which the results remain stable [18], investigating the

1

µ1

C
P

M

Level 1 (Large) Level 2 (Small)

0 µ2

µ1

In
fo

m
a
p

1µ2

0 1NMI

FIG. 3. (Color online) Performance of CPM and Infomap on
a hierarchical benchmark network in terms of normalized mutual
information (NMI) depending on mixing parameters μ1 and μ2. The
networks had n = 104 nodes with a degree distribution exponent of
2 (with average degree 20 and maximum degree 50) and community
size distribution exponent 1 for both small (size ranging from 10 to 50)
and large communities (size ranging from 50 to 300). Per combination
of parameters 10 graphs were used to obtain this result. The resolution
parameters γ for the two different levels were calculated analytically
for CPM.
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stability when the network is slightly perturbed [32] or by
looking at how significant the partition is compared to a graph
ensemble [33].

We have also performed extensive tests on hierarchical
networks, where the method also performs well, and is able
to extract the two different levels of communities effectively,
as displayed in Fig. 3. For relatively low μ2 � 0.7, the first
(larger) level becomes more clear for low μ1, while the second
(smaller) level becomes more clear for larger μ1. This is
both the case for a recent hierarchical version of the Infomap
method [34] and the CPM method. The Infomap method seems
to be slightly better at detecting the correct communities, but
the CPM method remains highly competitive. The possibility
for having various scales of description of the network seems
important, as many networks seem to have at least some
hierarchical structure.

V. CONCLUSION

Several community detection methods, among which mod-
ularity, are affected by the problem of the resolution limit. In
this paper we have provided a novel rigorous definition of what
it means for a community detection method to be resolution
(limit) free. Most importantly, we are able to prove exactly
which community detection methods are resolution-limit-free,
namely those methods that use local weights. This also clarifies
the relationship between local methods and the resolution
limit. However, we do not address the issue of determining
an actual meaningful resolution, which remains a challenging
problem.

Moreover, there does not seem to be much room for
having resolution-limit-free methods without local weights. Of
the few possibilities available for having resolution-limit-free
community detection, the constant Potts model (CPM) we
introduced in this paper seems to be the simplest possible
formulation, and performs excellent. A rigorous definition of
resolution-limit-free community detection allows for a more
articulate analysis, and induces further progress on developing
novel and meaningful methods.
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APPENDIX A: LOUVAIN LIKE ALGORITHM

The algorithm we employ is derived from the Louvain
method [7]. We use the concept of node size, denoted by
ni for a node i, initialized to ni = 1 [indeed the community
size nc = ∑

i niδ(σi,c) is related]. We first iterate (randomly)
over all nodes, and put nodes greedily into the community that

minimizes Eq. (5). We subsequently create a new graph based
on the communities, and new node sizes, and reiterate over
this new smaller graph. More specifically:

(1) Initialize Aij = wij , with wij = 1 in the case of un-
weighted networks, and set ni = 1 for all nodes i.

(2) Loop over nodes i, remove it from its community and
calculate for each community c the increase if we would put
node i into community c,

�H(σi = c) = −
⎡
⎣ei↔c − 2γ ni

∑
j

nj δ(σj ,c)

⎤
⎦ , (A1)

where ei↔c = ∑
j (Aij + Aji)δ(σj ,c) is the number of edges

between node i and community c. We put node i into the
community c for which �H(σi = c) is minimal. We iterate
until we can no longer decrease the objective function.

(3) We build a new graph A′
cd = ∑

ij Aij δ(σi,c)δ(σj ,d) and
node sizes n′

c = ∑
i niδ(σi,c). We repeat step 2 by setting

A = A′ and n = n′ until the objective function can no longer
be decreased.

The implementation of the algorithm in C++ can
be downloaded from the author’s website: [http://perso.
uclouvain.be/vincent.traag.]

Notice that for resolution-limit-free methods, the results
should be unchanged on subgraphs. Hence, we could therefore
perform the method recursively on subgraphs. We suggest
then the following improvement. First we cut the network
at each recursive call, until the density of the subgraph
exceeds γ . Then, we recombine the subgraphs, and loop over
nodes and communities to find improvements until we can no
longer increase greedily, and return to the previous recursive
function call. These calls should be easily parallelized, making
community detection in even larger graphs or in an online
setting possible by using cluster computing.

APPENDIX B: BENCHMARK TESTS

The benchmark networks are created using a known com-
munity structure, that is, a planted community structure. The
community sizes nc are chosen from a distribution following a
power-law Pr(nc = n) ∼ n−τ2 . The degrees ki of the nodes are
also chosen from a power-law distribution Pr(ki = k) ∼ k−τ1 .
The stubs are then connected, with probability 1 − μ within a
community, and with probability μ between two communities.
A lower bound nc and upper bound nc on the community sizes
is imposed, while for the degree the average degree 〈k〉 is
specified. For the hierarchical version, there are two levels,
with the communities of the second level embedded in the
first level. A fraction of μ1 of the links is placed between
two different macro communities at the first level, while a
fraction of μ2 of the links are placed between the small
communities of the second level (but within the same large
community).

Instead of detecting the resolution algorithmically, we
calculate the proper resolution parameter value γ analytically
(and therefore, beforehand). In order to do so, we consider
the following. The resolution parameter γ acts as a sort of
threshold on inner and outer community density. If we were
to set γ equal to the inner density, it would be rather difficult to
fulfill the condition that the inner density should be higher than
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that, and similarly so for γ equal to the outer density. So, we
need to be as far as possible from both the inner density as
well as the outer density, which would be simply the average
of the two.

The inner density for a community having nc nodes can be
easily found as

pin = (1 − μ)〈k〉
nc − 1

, (B1)

and the outer density (i.e., all the edges originating from a
community to the outside) is

pout = μ〈k〉
n − nc

, (B2)

where n is simply the total number of nodes. The average
community size 〈nc〉, which is proportional to

〈nc〉 ∼
nc∑

n=nc

nn−β, (B3)

where nc is the minimal community size and nc the maximal
community size, then gives us the 〈pin〉 and 〈pout〉 for the
average community size. The best resolution parameter is then
γ ∗ = 1

2 (〈pin〉 + 〈pout〉).
For the hierarchical test networks we can perform a similar

analysis and use the average of the inner and outer density,
similar as before, for the two different levels. Ordinarily, the
communities are assumed to exist whenever pin > pout.

For modularity we can also calculate similar bounds. When
we define by ec the number of edges within community c and
by [ec] the number of expected edges within a community,
modularity can be written as

H = −
∑

c

ec − γRB[ec]. (B4)

Hence, each community should have a “expected density”
or “degree density” p̃in = ec/[ec] within communities lower
than γ , while the outer degree density should be lower
between communities. Writing this out in terms of the
configuration model, given the model of the test networks, we
arrive at

p̃in = (1 − μ)n

nc

, (B5)

p̃out = μn

n − nc

. (B6)

These degree densities lack a clear interpretation, in contrast
with CPM. Similar as before we simply set γ ∗

RB = 1
2 (〈p̃in〉 +

〈p̃out〉) for the average community size 〈nc〉.
For comparing our results to the known community

structure, we use the normalized mutual information. Given
two different partitions C and D, the mutual information I is
defined as

I (C,D) = −
∑
r,s

nr,s

n
log n

nr,s

nrns

with nr,s being the number of nodes that are in community r in
partition C and in community s in partition D, while nr simply
denotes the number of nodes in community r . The normalized
mutual information In(C,D) is then defined as

In(C,D) = 2I (C,D)

H (C) + H (D)
,

where H (C) indicates the entropy of a partition C, which is
defined as

H (C) = −
∑

c

nc

n
log

nc

n
.

The normalized mutual information 0 � In(C,D) � 1, with 1
indicating equivalent partitions.
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