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Indirect Reciprocity Through Gossiping
Can Lead to Cooperative Clusters

V.A. Traag, P. Van Dooren Y. Nesterov

Abstract—Explaining how cooperation can emerge, and persist
over time in various species is a prime challenge for both
biologists and social scientists. Whereas cooperation in non-
human species might be explained through mechanisms such
as kinship selection or reciprocity, this is usually regarded as
insufficient to explain the extent of cooperation observed in
humans. It has been theorized that indirect reciprocity—I help
you, and someone else later helps me—could explain the breadth
of human cooperation. Reputation is central to this idea, since
it conveys important information to third parties whether to
cooperate or not with a focal player. In this paper we analyze
a model for reputation dynamics through gossiping, and pay
specific attention to the possible cooperation networks that may
arise. In this paper we show that gossiping agents can organize
into cooperative clusters, i.e. cooperate within clusters, and defect
between them, which can be regarded as socially balanced. We
also deduce conditions for these gossiping cooperators to be
evolutionary stable.

I. I NTRODUCTION

The scale of human cooperation is larger than seen in any
other animal. Since free riders can take advantage of cooper-
ators, explaining the evolution of cooperation is an interesting
and important research topic [1]. Various mechanisms have
been suggested that might explain the evolution of cooperation,
such as kinship, direct and indirect reciprocity [2]. Indirect
reciprocity is an important mechanism for the explanation
of human cooperation [3], since human cooperation is not
restricted to kinship or to repeated games. It is even suggested
that some form of indirect reciprocity would constitute the
biological basis of morality [4].

The evolution of cooperation is usually studied through the
prisoner’s dilemma [1]. In this game, both players have two
options: give the other some benefit at some costs to himself,
or not.Indirect reciprocityis based on the notion that if you aid
someone now, you might be returned the favor at another time
by someone else. The information whether or not someone has
cooperated is conveyed as his reputation.

In this paper we will analyze a model where reputation is
locally constructed through game interactions and transmis-
sion of information, i.e. gossiping. This in contrast to many
approaches [5]–[10] that consider reputation to be objective—
that is, the same reputation for all agents—which is arguably
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inaccurate, although some also assume that only some (so-
called ‘observing’) agents update their (private) reputations, so
that the reputation of an agent can diverge between different
‘observers’. Another noteworthy exception is [11], that studies
the problem of how to deal with lying when gossiping takes
place. However, none of these studies have devoted any
attention to cooperation networks (who will cooperate with
whom), to which we will pay special attention here.

The reputation dynamics inherent in these type of models
are also of interest from another point of view. It is known
in the sociological literature that gossiping plays a significant
part in the maintenance of norms [12], [13]. Whenever a group
upholds a certain norm, those who transgress the norm are
punished through social actions [14]. More specifically, the
reputation of someone who transgresses a norm would be
lowered, and gossiping seems to play an important role in
that process [13]. As cooperation could also be explained by
social norms [15] (although that begs the question how social
norms emerge and are maintained), our model would also be
of interest from that point of view.

In the next section, we will introduce our gossiping rep-
utation model. The third section will discuss fixed points
of these dynamics, showing that higher social influence can
lead to less cooperation within the population of gossiping
cooperators. Moreover, we show that undirected fixed point
cooperation networks are socially balanced. In the fourth
section, we will examine the evolutionary dynamics using
replicator equations, and give evolutionary stability conditions
for the gossiping cooperators. Finally we will give some
conclusions and directions for further research.

II. REPUTATION DYNAMICS

We consider a population ofn interacting agents. Each agent
has two options: give the other some benefitb > 0 at some
costsc < b to himself, or not. When the first option is chosen,
we say the agent has cooperated, and when the latter option
is chosen, he has defected. When both agents cooperate, the
payoff is b − c for both. If one cooperates, but the other
defects, the payoff for the first is−c and for the latterb.
If both agents defect, the payoff is0, since neither receive
nor give any benefit. In each round of interaction, everybody
plays everybody, and gossips about their interaction. Thatis,
we limit our analysis here to a complete interaction graph.

What option will be chosen (cooperate or defect) will
depend on some reputation. Similar to Nowak and Sigmund [5]
agents will cooperate whenever the reputation is positive,and
will defect when it is negative. After each round of interaction,
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players will gossip about their interaction to their neighbors.
They will, however, only tell agents with whom they have
cooperated.

We denote byRij(m) ∈ R the reputation agentj has in
the eyes of agenti, i.e. what agenti thinks of j, whether he
should cooperate or defect toj in roundm ∈ N. The decision
to cooperate is then denoted byαij(m) ∈ {0, 1}, and we will
consider

αij(m) = Θ(Rij(m)), (1)

where

Θ(x) =

{

1 if x ≥ 0
0 if x < 0

(2)

where αij(m) = 1 denotes cooperation andαij(m) = 0
defection. That is, agents cooperate whenever the reputation
is positive, and defect whenever it is negative.

The reputation is updated by considering both the individual
interaction, and the gossip passed on by the other players. We
consider the following dynamics of the reputation

∆Rij(m) = Rij(m + 1) − Rij(m) = (1 − λ)∆Iij(m)+

λ

n − 2

∑

k 6=i,j

∆Sij(k,m), (3)

where ∆Iij(m) is due to the individual interaction, and
∆Sij(k,m) is due to the gossip from agentk, balanced by
a social influence parameter0 ≤ λ ≤ 1, where higher
λ indicates a higher social influence. We call∆Iij(m) the
individual part, because in the absence of any social influence,
the dynamics of an agent would be solely based on his own
individual interaction, and call∆Sij(m) the social part.

For the individual part we consider a version of the Win-
Stay-Lose-Shift (WSLS) strategy, also known as the Pavlov
strategy [16]–[18]. Let us characterize this in terms of the
reputationRij(m). Whenever the outcome is favorable toi—
both agents cooperate, ori defects butj cooperates, thereby
giving i a benefit without having to pay the costs—it would
like to keep playing that choice (cooperate or defect), while
if the outcome is unfavorable—both defect, ori cooperates
while j defects—agenti would like to change its choice.
Hence, we will increase the reputation (with1) whenever both
agents cooperate or when both defect, and decrease (with1)
the reputation whenever one defects, and the other cooperates.
This leads to the following individual change in the reputation
of j in the eyes ofi

∆Iij(m) = (2αij(m) − 1)(2αji(m) − 1). (4)

The social part is somewhat more elaborate, for which we
consider again the reputationRij(m). We assume a neighbour
k will only gossip to agenti, whenever agentk cooperated
with agenti, or whenαki(m) = 1. Agent k will then gossip
about whatj has done tok in the last round. That is, agenti
will be informed ofαjk(m), or whetherj has cooperated or
not with agentk. However, depending on whati ‘thinks’ of
k, he might consider such an action to be ‘good’ or ‘bad’. A
small overview of this idea is provided in Fig. 1.

What actions can be considered ‘good’ and what ‘bad’ is
much debated [6], [8]–[10], but Ohtsuki and Iwasa demon-
strated there is a small set of best performing strategies [9].

i j

k

The link to

be updated.

Does i ‘like’ k?

Will k inform i?
Did j cooperate

with k?

Fig. 1. Illustration of how the social part of the reputationdynamics works.
In short, k informs i on the action ofj only if αik(m) = 1. Then i will
consider that action as ‘good’ if eitherj cooperates andi likes k or if j
defects andi doesn’t likek and as ‘bad’ whenj defects andi likes k or if
j cooperates andi doesn’t likek, as shown in Fig. 2.

G B

C G B

D B G

Reputation of k, or αik(m).

Action of j, or αjk(m)

Action is considered as
either Good or Bad

Fig. 2. The social strategy for updating the reputationRij(m). If αjk(m) =
1 agentj will have cooperated, and ifαik(m) = 1 the reputation is good,
and bad otherwise. Actions that are considered good increase the reputation
Rij(m), bad ones decrease the reputation (by1).

We will consider both cooperation with a good player, and
defection with a bad player as good, and the other two options
as bad, as displayed in Fig. 2, which is compatible with
Ohtsuki’s and Iwasa’s best performing strategies. An agentk
is considered good byi wheneverαik(m) = 1, and bad when
αik(m) = 0. Every good action will increase the reputation
by 1 and every bad action will decrease the reputation by1.
Taking into account the fact a neighbork will only gossip if
αki(m) = 1, we arrive at the following for the social part

∆Sij(k,m) = αki(m)(2αik(m) − 1)(2αjk(m) − 1), (5)

and take into account the average gossip of all neighborsk 6=
i, j.

Summarizing, the reputation dynamics can be seen as a
discrete non-linear switching system. If we denote byα(m)
the n × n matrix (αij(m)) and similarly byR(m) the n × n
matrix (Rij(m)) the system can be summarized as

R(m + 1) = R(m) + f(α(m)), (6)

α(m) = Θ(R(m)), (7)

where Θ is applied elementwise, given by (2), andf :
B

n×n 7→ R
n×n is given by (3), with B representing the

Boolean domainB = {0, 1}. This is the reputation dynamics
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TABLE I
OVERVIEW OF VARIABLES

Reputation Dynamics

m ∈ N Number of rounds of interaction
Rij(m) ∈ R Reputation of agentj for agenti at roundm
∆Rij(m) ∈ R Change in reputation in roundm
αij(m) ∈ B Agent i cooperates (1) or defects (0) with agentj
λ ∈ [0, 1] Social influence parameter
p ∈ [0, 1] Probability to cooperate in the first round

Evolutionary Dynamics

c > 0 Cost incurred by cooperating
b > c Benefit received from cooperative partner
xl ∈ [0, 1] Fraction of population of typei (relative abundance)
Pl(m) ∈ R Payoff for typel after m rounds of interaction
P̄ (m) ∈ R Average payoff in the population

for the gossiping cooperators we will use in the remainder of
the article.

III. POPULATION STRUCTURE

Let us investigate for which cooperation networks the
relations of cooperation and defection endure. That is, we
investigate the fixed points in terms ofαij(m), or when
α(m + 1) = α(m) in (7). That is,α(m + 1) = α(m) =
Θ(R(m)), so if αij(m) = 1, or equivalentlyRij(m) ≥ 0 then
Rij(m+1) ≥ 0 so that∆Rij(m) ≥ 0 is a sufficient condition
(and likewise forαij(m) = 0). In the following, we will call
a link on which there is defection also a negative link, that is,
where the reputation is negative, and likewise use positivelinks
for cooperative links. In order for any cooperation network
to be a fixed point, any positive link should remain positive,
and any negative link should remain negative. We call a
cooperation network acooperative fixed pointwhenever

∆Rij(m) ≤ 0 if αij(m) = 0, (8)

∆Rij(m) ≥ 0 if αij(m) = 1. (9)

Using these conditions it can be proven1 that for undirected
graphs (i.e.αij(m) = αji(m)), every connected component in
a cooperative fixed point network must be complete. This can
be proven inductively by looking at an already completely
cooperating networkG. Then, if we add a new agentu,
it needs to cooperate with at least one agentv ∈ G in
order to be connected. But if the agent then defects with
any other agentsw 6= v ∈ G, the cooperative fixed point
conditions are not fulfilled, proving that, whenever two agents
cooperate with each other, they should cooperate also with
all their cooperating partners. This corresponds to groups,
where there is only cooperation within groups, and defection
between groups. Indeed, the cooperation could then be viewed
as adhering to group norms, where agents are expected to
cooperate with group members, and to defect with outsiders.

Let us then consider groups1, . . . , q of agentsS1, . . . , Sq

with group sizesn1 = |S1|, . . . , nq = |Sq|, with only positive
links within groups, and only negative links between groups.
Now let i, j ∈ Sd, so thatαij(m) = 1. Then for this group

1We have skipped formal proofs in this paper due to lack of space.

structure to be a cooperative fixed point (9) must hold, so that

(1 − λ)(2αij(m) − 1)(2αij(m) − 1)+

λ

n − 2

∑

k 6=i,j

αki(m)(2αik(m) − 1)(2αjk(m) − 1) ≥ 0. (10)

Sinceαij(m) = αji(m) we can simplify to

(1 − λ)+

λ

n − 2

∑

k 6=i,j

αki(m)(2αik(m) − 1)(2αjk(m) − 1) ≥ 0. (11)

Since αki(m) = 1 only for k ∈ Sd, the summation is
effectively only over members of groupd. Since all links from
i and j to k then are positive, we obtain

(1 − λ) +
λ

n − 2
(nd − 2) ≥ 0 (12)

which always holds because2 ≤ nd ≤ n and0 ≥ λ ≥ 1.
Now let i ∈ Sd andj ∈ Se with e 6= d, so thatαij(m) = 0.

Similarly as before, for condition (8) to hold we require

(1 − λ)−

λ

n − 2

∑

k 6=i,j

αki(m)(2αik(m) − 1)(2αjk(m) − 1) ≤ 0. (13)

Again, sinceαki(m) = 1 only for k ∈ Sd, the sum is only over
agents in groupd. There is always a positive link betweeni
andk ∈ Sd and always a negative link betweenj andk ∈ Sd.
Hence, this simplifies to

(1 − λ) −
λ

n − 2
(nd − 1) ≤ 0, (14)

which shows that the group size1 ≤ nd ≤ n is bounded
by λ. More specifically, this condition needs to be fulfilled
for the smallest group, thus obtaining an upper bound on the
number of groups. To divide the network intoq groups, the
largest possible smallest group size is thenn/q (namely an
equipartition inq groups). Working out the previous condition
then gives

n

q
≥

(n − 2)(1 − λ)

λ
+ 1 (15)

which reduces to approximately

λ >
q

q + 1
. (16)

Hence, the social influenceλ induces an upper bound on the
number of groups that can possibly exist in the network. For
λ < 2/3 there can be only one group, and for increasingλ, the
possible number of groups increases. Forλ = 1 the number
of groups is maximum, that is, there can be as many groups
as there are agents; stated somewhat differently, the minimum
group size is then only1 agent.

This provides a surprising connection between indirect
reciprocity and a field known in the social sciences as social
balance theory [19]. When the theory was first stated a triad
(a cycle of three nodes) was balanced if it contained an even
number of negative links [20]. That is, ifi andj have a positive
relationship, they should both hold the same attitude towards
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k. A whole network can then be called balanced if all its triads
are balanced. It can be proven that a network is balanced if
and only if it can be divided into exactly two groups, with
only positive links within groups and negative links between
groups.

However, the triad with only negative links might be a little
ambiguous. That is, it is not necessarily the case that “my
enemy’s enemy is my friend”. Therefore, another definition
of social balance could be provided, namely that there is
not exactly one negative link in every cycle [21], which
might be labeled weak balance [22]. This is equivalent to
partitioning a network into multiple groups, with only positive
links within and negative links between groups [20]. Various
studies have investigated whether such a balanced state appears
from dynamics where unbalanced triads have a probability to
change into balanced triads (thereby possibly again creating
other unbalanced triads) [23]–[25].

From our earlier observations, we can conclude that every
fixed point cooperation graph is always weakly balanced. The
inverse statement only holds forλ = 1, so the two statements
are then equivalent, thus providing a new characterizationof
weakly balanced complete networks. So, in every weakly bal-
anced complete network two friends will have more common
friends than not, while two enemies will have less common
friends than not. Stated differently, most of my friends will be
friends themselves.

IV. EVOLUTIONARY DYNAMICS

We will now analyze how the gossiping cooperators perform
against unconditional cooperators and defectors (i.e. they
always cooperate or defect). That is, we let all agents play
a number of rounds of the prisoner’s dilemma to accumulate
some payoff. Higher payoff will imply a higher reproduction
rate, thereby increasing the relative abundance of successful
strategies. We will focus here on thetype of agents, not on
any individual agent.

Let n1 denote the number of unconditional cooperators,n2

the number of unconditional defectors andn3 = n denote the
number of gossiping cooperators; let the total population be
denoted byns = n1 + n2 + n3; let Nl for l = 1, 2, 3 denote
respectively the set of cooperators, defectors and gossiping
cooperators; and finally, let the proportion of each type be
denoted byxl = nl/ns. In the limit of large population size
the evolutionary dynamics can be described by the replicator
equation [26]

ẋl = xl(Pl(m) − P̄ (m)) (17)

wherePl(m) is the payoff for typel andP̄ (m) =
∑

l xlPl(m)
is the average payoff in the population afterm rounds. The
payoffPl(m) depends in principle on the cooperative behavior
of all agents, as is made explicit below, so also depends on
the xl variables. If we denote byX =

∑

l xl = 1, one can
see thatẊ = 0, so that the evolutionary dynamics take place
on the unit simplex.

For i /∈ N3, that is for a cooperator or defector, we
denote their action also byαij(m) similarly to the gossiping
cooperators. However, since there are no dynamics involved

for the unconditional cooperators and defectors, theB
ns×ns

matrix is relatively simple

αij(m) =







1 if i ∈ N1

0 if i ∈ N2

Θ(Rij(m)) if i ∈ N3

(18)

As the unconditional defectors and cooperators never
change their action, there are no dynamics involved for them.
So, only for i ∈ N3 do we have to specify howαij(m), or
better yet,Rij(m) changes, which of course remains the same
as before (but only the gossiping agents are considered in the
social part). Hence, fori ∈ N3

Rij(m + 1) = Rij(m) + (1 − λ)∆Iij(m)+

λ

n − 2

∑

k 6=i,j∈N3

∆Sij(k,m), (19)

and for i /∈ N3 nothing needs to be specified.
Consider an agenti. Each time another agentj cooperates

with agenti, the first receives a benefitb and the latter pays a
cost c, and similarly if agenti cooperates. So, the change in
payoff for agenti can be given asαji(m)b− αij(m)c. Since
we are studying the evolution in terms oftypes of agentswe
are interested in the average payoff for agents of a particular
type. So, in general, the payoff for typel can be written as

Pl(m) =
m
∑

w=1

1

nl

∑

i∈Nl

1

ns

∑

j 6=i

αji(w)b − αij(w)c. (20)

However, this depends on the cooperative behavior of agents
αij(m), which for gossiping cooperators can be rather difficult
to deal with, depending on the initial conditions in the first
round. Hence, we will only study expected values to obtain
analytical results.

For the gossiping cooperators, the reputationRij(1) needs
to be initialized. We will setRij(1) = 0 and instead of
setting thenαij(1) = Θ(Rij(1)) = 1, we assume gossiping
agents will cooperate with probabilityp. So, for the first
round we assumePr(αij(1) = 1) = p. In order to study
the evolutionary dynamics we will only look at the expected
reputation〈Rij(m)〉. With increasing variancep(1−p) of the
probability to cooperate, we are more likely to deviate from
the expected reputation, but forp = 0 and p = 1 the system
is deterministic, and the derivations will be exact.

Since the unconditional defectors will always defect, and
likewise the unconditional cooperators will always cooperate,
the only question is what the gossiping cooperators will do.
By plugging (18) into (3), and by taking into account that
Pr(αij(1) = 1) = p for i ∈ N3, and only taking into
account the expected change in the reputations, we arrive at
the following reputations form = 2

〈Rij(2)〉 =







(2p − 1)(1 + λ(p − 1)) if j ∈ N1

(1 − 2p)(1 + λ(p − 1)) if j ∈ N2

(2p − 1)2(1 + λ(p − 1)) if j ∈ N3

(21)

with obviouslyi ∈ N3. Then forp > 1/2, the expected reputa-
tion will be positive for cooperators, and negative for defectors,
and forp < 1/2 just the other way around. If we assume that
for positive expected reputation the gossiping cooperators will
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TABLE II
SUMMARY OF POSSIBLE TRANSITIONS FROM A POSITIVE/NEGATIVE

EXPECTED REPUTATION〈Rij(m)〉 TO A POSITIVE/NEGATIVE EXPECTED

REPUTATION 〈Rij(m + 1)〉 IN THE NEXT ROUND VERSUS COOPERATORS

AND DEFECTORS.

(a) vs. cooperators
〈Rij(m)〉

< 0 > 0

〈Rij(m + 1)〉
< 0 λ < 1

2
Never

> 0 λ > 1

2
Always

(b) vs. defectors
〈Rij(m)〉

< 0 > 0

〈Rij(m + 1)〉
< 0 λ > 1

2
Always

> 0 λ < 1

2
Never

cooperate (and for negative expected reputation defect), then
the gossiping cooperators will cooperate with cooperatorsif
p ≥ 1/2 and defect against defectors forp < 1/2. Hence, this
warrants to analyze the casesp < 1/2 andp ≥ 1/2 separately.
The average reputation between gossiping cooperators will
always be positive.

After these first two rounds, the sign of the reputations
versus cooperators and defectors might change however. From
this point on, all gossiping cooperators will have a positive
reputation amongst each other, soαij(m) = 1 for i, j ∈ N3

andm ≥ 2. Then the expected change in reputation form > 2
is given by

〈∆Rij(m)〉 =







(1 − λ)(2αij(m) − 1) + λ if j ∈ N1

(λ − 1)(2αij(m) − 1) − λ if j ∈ N2

1 if j ∈ N3

(22)
Hence, ifαij(m) = 1 then 〈∆Rij(m)〉 > 0 for cooperators,
and〈∆Rij(m)〉 < 0 for defectors. That is, once they cooperate
with cooperators, they will continue to cooperate, while for
defectors, if they cooperate, after some time they will start
defecting. Now supposeαij(m) = 0. Then 〈∆Rij(m)〉 > 0
only if λ > 1/2 and〈∆Rij(m)〉 < 0 only for λ < 1/2 against
cooperators. For defectors,〈∆Rij(m)〉 > 0 only if λ < 1/2
and 〈∆Rij(m)〉 < 0 only if λ > 1/2. This is summarized in
Table II.

This suggests we can distinguish four different regimes of
behavior, based on whetherp andλ are larger or smaller than
1/2, which we will briefly describe, and are summarized in
Table III. We will demonstrate how to derive explicitly the
payoffsPl(m) for the first regime, as the payoffs for the other
regimes can be similarly dealt with. Due to lack of space, we
provide the normalized payoffs only in the Appendix.

A. Individualistic prejudiced

When λ < 1/2 and p < 1/2 the gossiping cooperators
listen more to themselves than to others, and they start out
with some prejudice towards others—that is, they are more
likely to defect than to cooperate in the first round. In the
second round, they will cooperate with defectors, and defect
against cooperators. Thereafter, the gossiping cooperators will
always defect against cooperators, but cycles of cooperation

and defection against defectors emerge. This is due to the fact
that for λ < 1/2, whenever the reputation is negative, it will
become positive, and whenever it is positive it will become
negative again.

Suppose they have cooperated once, then the question is
how many times they defect before they start another cooper-
ative round. The change is〈∆Rij(m)〉 = (1−λ)−λ = 1−2λ
if they defect and〈∆Rij(m)〉 = −(1 − λ) − λ = −1
if they cooperate. Hence, the question is for what number
of rounds r we have r(1 − 2λ) − 1 > 0, which implies
r > 1/(1 − 2λ). Hence, we will have about1/(1 − 2λ)
defections for every single cooperation, after the first round.
This observation agrees also with the fact that the Win-Stay-
Lose-Shift strategy cooperates with unconditional defectors
half of the time (which is the case forλ = 0). Also, for
λ → 1/2, the number of defections per cooperation goes to
infinity, showing they tend to always defect whenλ → 1/2.

We can simplify the calculations of the payoff for these
cycles, by considering the average behavior for these cycles.
Since for each cooperation we have1/(1− 2λ) defections we
can spread this amount of cooperation over the complete cycle,
and obtain an average cooperation of(1 − 2λ)/(2 − 2λ) per
round.

Let us first derive then the payoffP1(m) for cooperators.
They will cooperate every round with everyone, so pay a cost
of c, however, they will receive a benefit from themselves,
so receiveb. From the defectors, they will never receive any
benefit. The gossiping cooperators will cooperate in the first
round with probabilityp, and hence, the cooperators receive
pb on average from them. In the subsequent round (since
we assume here thatλ < 1/2 and p < 1/2), the gossiping
cooperators will defect with unconditional cooperators, that is,
〈Rij(2)〉 < 0 for i ∈ N3 andj ∈ N1 from (21) in this regime.
From (22) we can conclude indeed that〈Rij(m)〉 < 0 for
further rounds. Putting all this together, we arrive at

P1(m) = x1(mb − mc) + x2(−mc) + x3(pb − mc). (23)

Now let use derive the payoffP2(m) for the defectors.
They will always defect, so never pay a costc. From the
cooperators they will receive a benefitb, and nothing from
themselves. From the gossiping cooperators they will receive
b with probabilityp, sopb on average as well. As we concluded
earlier, cycles of cooperation and defection will emerge for the
gossiping cooperators, but we can assume that they will only
cooperate(1−λ)/(1−2λ) rounds on average. Putting all this
together, we obtain

P2(m) = x1(mb) + x3

(

pb + (m − 1)b
1 − λ

1 − 2λ

)

(24)

Observe that necessarily all costs that are being made for
type1 appear as benefits to types2 and3, and likewise so for
all other possibilities. This means that for the payoffP3(m)
of the gossiping cooperators, we already discussed most of
it. We only need to consider what the gossiping cooperators
are doing amongst each other. Since they will always end up
cooperating after roundm = 2, this payoff is easy. Putting all
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TABLE III
FOUR DIFFERENT REGIMES

p < 1/2 p > 1/2
λ < 1/2 Individualistic prejudiced

• Defect vs. cooperators
• Cycles of cooperation vs. defectors

Individualistic trusting
• Cooperate vs. cooperators
• Cycles of cooperation vs. defectors

λ > 1/2 Social prejudiced
• Cooperate vs. cooperators

(except second round)
• Defect vs. defectors

(except second round)

Social trusting
• Cooperate vs. cooperators
• Defect vs. defectors

this together then yields

P3(m) = x1(mb − pc) + x2

(

−pc − (m − 1)c
1 − λ

1 − 2λ

)

+

x3((m − 1)c + pc − (m − 1)b − pc) (25)

The payoffs for the other regimes can be similarly derived.

B. Individualistic trusting

Whenλ < 1/2 andp ≥ 1/2 the gossiping cooperators still
pay more attention to themselves, but they start cooperation
somewhat easier in the first round. In the second round, they
will cooperate with cooperators, and defect against defectors.
After that, they will continue to cooperate with cooperators,
while again cycles of cooperation and defection will appear,
just as in the individualistic prejudiced regime.

Hence, the only difference between the trusting and the prej-
udiced individualistic regimes is that the gossiping cooperators
cooperate with the cooperators in the trusting regime, instead
of defecting them, as in the prejudiced case. This implies
the gossiping cooperators are expected to perform relatively
worse, especially for lowλ.

C. Social prejudice

When λ > 1/2 and p < 1/2 the gossiping cooperators
start to pay more attention to their peers, but will start
with some reticence in the first round. They will always
end up cooperating with cooperators, and defecting against
defectors. However, in the second round, the reputation forthe
cooperators is expected to be negative, hence the gossiperswill
defect that round, while they will cooperate with defectors.
The behavior versus defectors can indeed be seen as the limit
of λ → 1/2, but the behavior versus cooperators radically
changes, since they will now end up always cooperating.

D. Social trusting

Whenλ > 1/2 andp ≥ 1/2 they pay again more attention
to their peers, and are more willing to cooperate. They will
simply always cooperate with cooperators and defect against
defectors, starting from the first round. This can be seen as
the limit of λ → 1/2 from the individualistic case, both for
the behavior versus cooperators and defectors.

E. Fixed points and evolutionary stability

The dynamics for the four different regimes are qualitatively
very similar. Example phase portraits for all regimes are shown
in Fig. 3. For some parameter range there is an unstable fixed
point on thex2x3 edge (so wherex∗

1 = 0), consisting of
only gossiping cooperators and defectors. There are never any
inner fixed points. Forp = 1 the wholex1x3 edge are fixed
points. So forp = 1 selection is neutral between unconditional
and gossiping cooperators (if no defectors are present). Inthat
case, a population of gossiping cooperators can drift towards
unconditional cooperators. However, an invading type with
alternativep < 1 then has a selective advantage.

The unstable fixed point on thex2x3 edge for the different
regimes are:

Individualistic prejudiced

x∗
3 = c

1 − 2λ

b − c
+ pc

2 − 2λ

(b − c)(m − 1)
(26)

Individualistic trusting

x∗
3 = c

1 − 2λ

b − c
− pc

2 − 2λ

(b − c)(m − 1)
(27)

Social prejudiced

x∗
3 = c

p + 1

(b − c)(m − 2)
(28)

Social trusting
x∗

3 = c
p

(b − c)(m − 1)
(29)

The gossiping cooperators are exactly evolutionary stable
whenever this fixed point exists, i.e. whenx∗

3 < 1, showing
a transcritical bifurcation whenP3(m) = 0 for x∗

3 = 1.
The transition from the individual prejudiced regime to the
individual trusting regime is especially sudden. This is due
to the fact that the gossiping cooperators defect unconditional
cooperators in the individual prejudiced regime, while they
suddenly start cooperating with them in the trusting regime.
This suggests individualistic, prejudiced gossiping cooperators
perform relatively well in a friendly environment, whereas
more socially oriented gossiping cooperators would do better
in a tougher environment.

V. CONCLUSION

In this article we introduced a model for studying indirect
reciprocity by explicitly considering the gossiping mechanism
to allow for local reputations. We have shown that fixed
point undirected cooperation networks are socially balanced.
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x1=1 x2=1

x3=1

(a) Individual prejudiced

x1=1 x2=1

x3=1

(b) Individual trusting

x1=1 x2=1

x3=1

(c) Social prejudiced

x1=1 x2=1

x3=1

(d) Social trusting

Fig. 3. Phase portrait of the social trusting regime. Parameters b = 4,
c = 1, m = 3. For the prejudiced regime,p = 1/4 and for the trusting
regimep = 3/4. The individual regime usesλ = 1/4, and the social regime
λ = 3/4. Open circles signify unstable fixed points and closed (black) circles
stable fixed points.

The model can be considered an (additional) argument why
socially balanced situations should be more prevalent, apart
from psychological theory [27]. It would also be interesting
to compare this model to other dynamical models of social bal-
ance [23], [24], [28]. Furthermore, we have derived replicator
equations to provide evolutionary stability conditions for the
gossiping cooperators. This shows such a strategy could have a
selective advantage, and possibly such a more socially oriented
strategy could have evolved from the individual strategy.

The model as currently stated is far from realistic however.
First of all, the interaction is assumed to be all-to-all, which
clearly needs to be addressed. Combining this gossiping mech-
anism with for example active linking strategies [29], [30]or
simply allowing some static interaction graph [31]–[33] should
address this issue, and allow us to study indirect reciprocity on
graphs. Secondly, gossip might be passed on further than only
one step, thus allowing cascades of gossips, possibly reaching
the entire population [34].

Even so, the model provides key insight in the working of
gossip and reputation in the context of indirect reciprocity [3]
and could provide some insight into how social norms are
formed and upheld [12]–[14]. Yet the analysis of even this
simple model is far from complete and needs to be studied
further.
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APPENDIX

The payoffs have been normalized by subtractingP2(m)
from every Pi(m), i.e. P̂i(m) = Pi(m) − P2(m), which
does not affect the dynamics [26]. Using this, we obtain the
following normalized payoffs for the four regimes.

Individual prejudiced

P̂1(m) = − mc − (m − 1)bx3
1 − 2λ

2 − 2λ
, (30)

P̂3(m) =(m − 1)

[

x3(b − c) − (cx2 + bx3)
1 − 2λ

2 − 2λ

]

− pc.

(31)

Individual trusting

P̂1(m) =(m − 1)bx3
1

2 − 2λ
− mc, (32)

P̂3(m) =(m − 1)bx3
1

2 − 2λ
− (m − 1)c(x1 + x3)−

(m − 1)cx2
1 − 2λ

2 − 2λ
− pc. (33)

Social prejudiced

P̂1(m) =(m − 3)bx3 − mc (34)

P̂3(m) =(m − 2)bx3 − (m − 1)cx3 − (m − 2)cx1−

cx2 − pc (35)

Social trusting

P̂1(m) = (m − 1)bx3 − mc (36)

P̂3(m) = (m − 1)bx3 − (m − 1)c(x1 + x3) − pc; (37)

Obviously P̂2(m) = 0 for all regimes. By settinĝP1(m) =
P̂3(m) = P̂2(m) = 0 and solving we are looking for interior
fixed points, which do not exist, because the solution always
contradict the bounds forλ, p, b, c andm. The fixed point on
the line wherex∗

1 = 0 can be found by demandinĝP3 = 0
and solving forx∗

3 and usingx∗
2 = 1 − x∗

3.
Now to investigate the stability of the fixed points of the

replicator equation (17), we need to take a look at the eigenval-
ues of the Jacobian. If we writefi(x) = xi(P̂i(m) − ˆ̄P (m)),
with x = (x1, x2, x3), the derivatives can be written as

∂fi

∂xj

= xi

(

∂P̂i(m)

∂xj

−
∂ ˆ̄P (m)

∂xj

)

for j 6= i, (38)

∂fi

∂xi

= (P̂i(m) − ˆ̄P (m)) + xi

(

∂P̂i(m)

∂xi

−
∂ ˆ̄P (m)

∂xi

)

(39)

For the fixed pointsx∗
i = 1, the Jacobian simplifies as

follows. Only the diagonal and∂fj/∂xi is possibly non-zero,
sincexj = 0 for i 6= j. Hence, the eigenvalues are contained
exactly on the diagonal. This gives forx∗

3 = 1

∂f2

∂x2
= (P̂2(m) − ˆ̄P (m)) + x2

(

∂P̂2

∂x2
−

∂ ˆ̄P

∂x2

)

, (40)

but sincex∗
2 = 0 andP̂2(m) = 0, this simplifies to− ˆ̄P (m) =

−P̂3(m). Furthermore, since then

∂ ˆ̄P (m)

∂x3
=

∂P̂3(m)

∂x3
+ P̂3 (41)

we also obtain
∂f3

∂x3
= −P̂3(m). (42)

Since P̂1(m) − ˆ̄P (m) < 0 for x∗
3 = 1 for 0 < p < 1, the

only condition is thatP̂3(m) > 0 for x∗
3 = 1, which is the

case when the fixed point on thex2x3 edge (withx∗
1 = 0)

exists. The transcritical bifurcation then takes place when the
stability of the fixed pointx∗

3 = 1 changes from instable to
stable, i.e. when̂P3(m) = 0 for x∗

3 = 1.
The fixed pointx∗

2 = 1 unfortunately is non-hyperbolic, so
that we cannot use the linearization to study the stability.The
functionV (x) = x2 for x = (x1, x2, x3) obtains its maximum
clearly atx2 = 1 = x∗

2, and has derivative

V̇ (x)

V (x)
= ˙(log V (x)) = ˙(log x2) =

ẋ2

x2
= − ˆ̄P (m). (43)

so is a Lyapunov function ifˆ̄P (m) < 0. Since there exists
small x1, x3 > 0 such that ˆ̄P (m) < 0, the pointx∗

2 = 1 is
always stable.

The instability of the fixed point on thex2x3 edge (where
x∗

1 = 0) can be shown by only looking at this particular line,

hence a simple one dimensional system. Since∂P̂3(m)
∂x3

> 0
for the fixed points in the one-dimensional system it is always
unstable, hence it is also unstable in the larger two-dimensional
system.
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