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1 Introduction

SOCIAL networks have become increasingly more prominent the
last decade. The advent of online social networks have attracted
the interest of millions of people. It allows friends to connect over

the internet, and share whatever they want with each other. Facebook was
only launched in 2004, and has started out with a few thousand people, but
currently over 1 billion people use its services. Although the online social
network of competitor Google was rolled out only in 2011, they apparently
have succeeded in attracting over 500 million people. Other services such
as LinkedIn use a more professional career orientation and have a smaller
user base of only about 90 million users. Twitter, with its well known short
messages, has grown to half a billion users in only 6 years time. They han-
dle more than 300 million tweets per day, some 3500 messages per second.

The structure of these networks are fascinating, and gives us a glimpse
of how humans connect to each other. One prominent feature of many
social networks is the clustering of people. Friends tend to have many
friends in common, thereby creating social groups in which many people
know each other. Knowing these social groups yields additional insight
into the structure of these networks; it yields a “birds eye view” of these
networks, a global picture of what it looks like, as illustrated in Fig. 1.1.
To find these social groups, the idea is to look for densely connected sub-
graphs in the network, which are only loosely connected amongst each
other. These dense subgraphs are commonly known as “communities” in
the literature, and the field that deals with finding such communities as
“community detection” (Fortunato, 2010; Porter, Onnela and Mucha, 2009).

One of the most popular method for doing community detection is that
of modularity (Newman and Girvan, 2004). It focus on groups of nodes
that have a higher density then can be expected in a random graph. This
method is actually a special case of a more general framework which we
will introduce in chapter 2. Although modularity works reasonably well,
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Fig. 1.1 Example of communities in networks

the comparison to a random graph introduces non-trivial problems, and it
forecloses the detection of relatively small communities in large networks,
the so called resolution limit. We will analyse this problem in chapter 3
and suggest some methods for addressing these issues. Although the so-
lution we propose doesn’t suffer from the resolution limit, there are still
some questions related to scale. In particular, should the partition be rather
coarse of rather fine? This leads to the concept of finding some “signifi-
cant” scale which we will address in chapter 4.

Although most methods for community detection focus on networks
that have positive links, negative links also appear naturally in numerous
fields. Such negative links represents animosity, such as hatred, war or con-
flict. Incorporating these negative links can be done in a relatively natural
manner. Whereas for negative links we would like to have relatively many
positive links within a community, for negative links this intuition is the
inverse, and we would like to have relatively little negative links within a
community. We address this issue in chapter 5. We will review some appli-
cations of community detection in chapter 6 in a network of international
relations and a citation network.

The structure of negative links has been studied by the social sciences
before in the context of “social balance” (Cartwright and Harary, 1968;
Harary, 1953; Cartwright and Harary, 1979). This theory is based on the
adage that “the enemy of an enemy is a friend”, and we will review it in
chapter 7. The main observation is that socially balanced networks can be
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split in (at most) two factions where each faction has only positive links
within and negative links between the factions (Harary, 1953). Besides the
important question of detecting such factions in networks, which is already
reviewed in chapter 5, one of the main questions is how social balance may
emerge and why we observe it so often. We will review some dynami-
cal models that can potentially explain the emergence of social balance in
chapter 8.

In addition there is a natural connection between negative links and
the problem of the evolution of cooperation (Nowak, 2006b). We consider
a positive link to indicate cooperation and a negative link to indicate de-
fection (i.e. not cooperating). The evolution of cooperation is problematic
since defection is usually the only sensible option. But if one could gain by
defecting, then why is cooperation so common? One possible mechanism
is through reputation, also known as “indirect reciprocity” (Nowak and
Sigmund, 2005). We will briefly review the evolution of cooperation, and
show in chapter 9 that some model that explains social balance can lead to
cooperation.

Finally, if we are given some network that has positive and negative
links, we might also wonder how to determine with whom to cooperate.
This is especially pertinent in online markets such as eBay or Amazon. In
such settings we would like to make sure that we can trust with whomever
we deal with. We assume that positive links indicate some trust and neg-
ative links some distrust. Based on these local trust values we calculate a
global trust value—a reputation. This reputation can then be used to take
further action, for example banning nodes with a negative reputation from
the network. We will suggest such a method in chapter 10.

1.1 My contributions

Of course, not all material covered in this thesis is mine, and my work
builds on that of a long line of previous scholars. To make clear what my
contributions are, I briefly describe them here, although they are of course
also referred to at the appropriate places.

In community detection, I believe I made two large contributions to the
field. The first is the development of the notion of resolution-limit-free,
or scale-invariance, as I’ve termed it in this thesis. This concept allows
scholars to state more formally if a method does or does not suffer from
a resolution-limit (see chapter 3 for details). Moreover, it appeared that
only few methods were scale-invariant, of which CPM is one such method

13
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(see chapter 2 for the introduction of the method) This work forms the
foundation for chapters 2 and 3 and has been published here:

1. Traag, VA, Van Dooren, P and Nesterov, Y (2011b). Narrow scope for
resolution-limit-free community detection. Physical Review E, 84(1):016114.
doi: 10.1103/PhysRevE.84.016114. arXiv:1104.3083

The second large contribution is more recent. It deals with the question
how to choose an appropriate resolution parameter for the CPM method.
More specifically, I try to do so by focusing on the significance of a par-
tition (see chapter 4). I believe this will help future scholars in trying to
determine how relevant their partition is. It has not yet been published,
but it is available from the arXiv:

2. Traag, VA, Krings, G and Van Dooren, P (2013). Significant scales in
community structure. submitted. arXiv:1306.3398

More minor theoretical work involved the incorporation of negative
links in community detection. From a theoretical point of side, this con-
tribution is relatively straightforward, although the applications are quite
interesting. It forms the basis for chapter 5. This was published at the
beginning of my PhD thesis:

3. Traag, VA and Bruggeman, J (2009). Community detection in net-
works with positive and negative links. Physical Review E, 80(3):036115.
doi: 10.1103/PhysRevE.80.036115. arXiv:0811.2329

I have collaborated with others on two applications of community de-
tection. The focus in both cases is on conflict or negative links, and less on
the scale-invariant method (research using that method is ongoing). These
collaborations have resulted in two publications in more domain specific
journals:

4. Lupu, Y and Traag, VA (2012). Trading Communities, the Networked
Structure of International Relations, and the Kantian Peace. Journal of
Conflict Resolution. doi: 10.1177/0022002712453708

5. Bruggeman, J, Traag, VA and Uitermark, J (2012). Detecting Commu-
nities through Network Data. American Sociological Review, 77(6):1050–
1063. doi: 10.1177/0003122412463574

The incorporation of negative links have also led me in the direction of
studying them outside the field of community detection. In particular, the
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theory of social balance is relevant there (see chapter 7). The most interest-
ing question is: what dynamics would lead to social balance? We address
this question in chapter 8 and is largely based on:

6. Traag, VA, Van Dooren, P and De Leenheer, P (2013). Dynamical
models explaining social balance and evolution of cooperation. PLoS
ONE, 8(4):e60063. doi: 10.1371/journal.pone.0060063. arXiv:1207.6588

The connection of social balance to the evolution of cooperation (see chap-
ter 9) interested me already before, and I briefly addressed that in this con-
ference paper:

7. Traag, VA, Van Dooren, P and Nesterov, Y (2011a). Indirect reci-
procity through gossiping can lead to cooperative clusters. In IEEE
Symposium on Artificial Life 2011, pages 154–161. IEEE. doi: 10.1109/AL-
IFE.2011.5954642

The issue of trying to rank nodes when negative links are present is also
addressed in a conference paper:

8. Traag, VA, Nesterov, Y and Van Dooren, P (2010). Exponential Rank-
ing: taking into account negative links. LNCS, 6430:192–202. doi:
10.1007/978-3-642-16567-2

Finally, I was involved in some publications that have not been in-
cluded in this thesis. For the sake of completeness, I would simply like
to list them here:

9. Traag, VA, Browet, A, Calabrese, F and Morlot, F (2011). Social Event
Detection in Massive Mobile Phone Data Using Probabilistic Loca-
tion Inference. In Proceedings IEEE SocialCom’2011, pages 625–628.
IEEE. doi: 10.1109/PASSAT/SocialCom.2011.133

10. Csáji, B, Browet, A, Traag, VA, Delvenne, JC, Huens, E et al. (2012).
Exploring mobility of mobile users. Physica A, 392(6):1459–1473. doi:
10.1016/j.physa.2012.11.040
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Communities in networks





2 Community detection

IN many fields, the idea of having communities is quite natural. In so-
cial networks—the main focus of this thesis—communities correspond
naturally to social groups. But other networks also frequently have

such dense subgraphs. In networks of international trade, some countries
trade much with each other, but not so much with others (Barigozzi, Fagi-
olo and Mangioni, 2011). For example, many Western countries trade more
amongst each other than with others. But also technological networks such
as the world wide web contain communities: websites of related content
refer mostly to each other (Kleinberg and Lawrence, 2001). These commu-
nities then represent common topics, such as politics, football or auto mo-
biles. Biological networks, such as food webs—which species eats which
species—have communities in the form of ecological subsystems, a phe-
nomenon also known as compartmentalization (Stouffer and Bascompte,
2011). For example, in the ocean, many species live in the top of the ocean,
hence feeding only on other species which live there, while completely
different species exist at greater depths. We might also mention biochem-
ical networks such as protein-protein interaction or metabolic networks,
where communities seem to represent proteins or metabolites with similar
functions (Guimerà and Nunes Amaral, 2005). Many additional examples
of communities in networks could be provided (Guimerà, Mossa, Turtschi
et al., 2005; Porter, Mucha, Newman et al., 2005; Zhang, Friend, Traud et al.,
2008; Meunier, Lambiotte, Fornito et al., 2009; Hagmann, Cammoun, Gi-
gandet et al., 2008; Onnela, Saramäki, Hyvönen et al., 2007; Kashtan and
Alon, 2005).

It is clear that communities are frequently present in networks, and
often have a very natural interpretation. They allow researchers to un-
derstand better the network by reducing its complexity. For example, al-
though the network of mobile phone users in Belgium is very complex, its
community structure reveals that its primary organization principle is lan-
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guage (Expert, Evans, Blondel et al., 2011). Our goal here is to investigate
how such communities might be uncovered. We will first briefly explain
the most common method for detecting communities, known as “modu-
larity” in this chapter. We will then derive modularity from a more general
framework from which some other methods can also be derived. Some of
these methods have some problems, and we will discuss and analyse them
in some detail, and provide some solutions in chapter 3. For example, it
remains a challenge to see how “granular” partitions should be: is is better
to partition the network in many smaller communities, or in a few large
communities? We address this choosing of the correct resolution in chap-
ter 4. If negative weights are present in network, modularity (and some
variants) do not work well, and we will analyse some possible alternatives
in chapter 5. Finally, we will discuss some applications of community de-
tection in chapter 6.

2.1 Modularity

Although clustering and graph partitioning have already quite a long his-
tory, they are usually not applied to (social) networks. Sociologists have
constructed methods known as block modelling (Doreian, Batagelj and
Ferligoj, 2005; Wasserman and Faust, 1994), which are closer to “role1” de-
tection (Reichardt and White, 2007) than to community detection. Com-
puter scientists have been interested in graph partitioning for quite some
time as well (Newman, 2010). But the detection of groups in social net-
works really started to take off with a seminal paper by Girvan and New-
man (2002) in 2002. Especially their follow-up paper (Newman and Gir-
van, 2004) which introduced a measure known as modularity attracted an
enormous interest by a large group of researchers.

Originally, they implemented an algorithm based on the removal of
edges which are part of many shortest paths (Girvan and Newman, 2002).
The idea was that links that fall between communities are part of many
such paths, because there are only few links that connect vertices from one
community to another. Removing them should then disconnect the net-
work at some point, in which case the communities should become visible.
However, it was not clear at which point to stop removing edges. In order
to determine this point, they introduced modularity (Newman and Girvan,

1A role describes nodes that have similar connections to other roles, something closely
related to the concept of “regular equivalence” (Wasserman and Faust, 1994; Reichardt and
White, 2007).
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Modularity

2004). This function should give some idea about the quality of a certain
partition, and hence a clue as to when the algorithm should stop removing
edges.

The idea is that communities should have relatively many edges within
communities, and only little in between. Let A be an adjacency matrix of
some undirected graph, so that Ai j = A ji = 1 if there is an edge (i, j) and
zero otherwise. Let us assume we have some fixed partition, and denote
by ecd the number of edges between communities c and d, corresponding
to a tabulation as follows

1 2 · · · q ∑

1 e11 e12 · · · e1q K1

2 e21 e22 · · · e2q K2
...

. . .
...

q eq1 eq2 · · · eqq Kq

∑ K1 K2 · · · Kq 2m

Fr
om

co
m

m
un

it
y

To community

(2.1)

Then ∑cd ecd = 2m equals twice the number of edges, since we are deal-
ing with an undirected graph, and we count each edge twice in this man-
ner. We are interested in ∑c ecc/2m the fraction of edges within communi-
ties. Looking at this quantity, one already gets an idea of how good the par-
tition is. However, it should be compared to how many edges we would
expect to fall between two communities. This is usually done by simply
taking marginals—row/column totals—which are Kc := ∑d ecd = ∑d edc,
the total number of edges linked to community c, as indicated in Eq. 2.1. Of
course then also ∑c Kc = ∑cd ecd = 2m. We thus arrive at the expected num-
ber of edges of KcKd between communities c and d, which proportional to
2m then becomes KcKd/(2m)2. Since we are only interested in having as
many links as possible within a community we arrive at the function

Q = ∑
c

[
ecc

2m
−
(

Kc

2m

)2
]

. (2.2)

The derivation provided here is quick and dirty, and we will see how a
more rigorous derivation will also lead to modularity in the next section.

This measure seemed to do what was intended. Indeed when there are
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2 Community detection

relatively many edges within a community, this quantity is relatively high,
and approaches 1 for the most modular network possible. If a partition of
a network is no better than random then Q ≈ 0. It was thought then that
values above about 0.30 would be a sign of modular structure (Newman
and Girvan, 2004).

Although their original algorithm worked reasonably well, it was quite
slow, and quickly faster algorithms appeared (Clauset, Newman and Moore,
2004; Newman, 2004; Duch and Arenas, 2005). But their measure of modu-
larity turned out to be an interesting one. Instead of using it simply to mea-
sure how well the network was partitioned, people began to optimize the
measure itself (Guimerà and Nunes Amaral, 2005; Newman, 2006; Duch
and Arenas, 2005). However, it has some deficits and problems, which we
will discuss in the next chapter. But first we will derive this measure of
modularity in a more general framework, and go over some of the other
possible methods for community detection.

2.2 Canonical community detection

In this chapter we will derive modularity in a more general setting, starting
from first principles, similar to Reichardt and Bornholdt (2006a). As stated,
this more general framework will be used throughout the thesis, and forms
the backbone of our analysis. Although not all methods can be represented
in this way, it is a reasonably general framework, and we therefore refer to
it as the canonical community detection framework.

Let us first start with some basic notation. Let G = (V, E) be an undi-
rected graph with nodes V = {1, . . . , n} and E = {(i, j) : i, j ∈ V} theG = (V, E) graph

undirected edges of the graph G. Furthermore, we denote by A the adja-
cency matrix of G, such that Ai j = 1 if there is an (i, j) link, and Ai j = 0A adjacency

matrix otherwise. For an undirected graph the adjacency matrix A = A> is sym-
metric where A> denotes the transpose (i.e. A>ji = Ai j). In addition,symmetric

transpose
each link might have an associated weight wi j ∈ R, which we assume
to be positive for the moment (we will consider the possibility of negative
weights explicitly in Chapter 5). It might sometimes be useful to have a
weighted adjacency matrix where Ai j = wi j when there is an (i, j) link. If
we use the weighted adjacency matrix, this will be stated explicitly. The
unweighed case then also corresponds to a weight of wi j = 1. We denote
the partition by σi ∈ {1, . . . , q} where each σi indicates the community
to which node i belongs, so σ is the membership vector. Alternatively,σ membership

vector
it is sometimes useful to denote communities as sets of nodes. We will
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use C = {C1, C2, . . . , Cq} to denote the set of community sets, such that C community sets

each set Cc = {i ∈ V | σi = c} contains the nodes which belong to com-
munity c. Any partition of the graph is assumed to be non-overlapping
and complete. Stated differently, every node belongs to a single commu-
nity, in other words, for any valid partition it holds that

⋃q
c=1 Cc = V (all

nodes are in a community) and Cc ∩ Cd = ∅ for c 6= d (no node is in more
than one community). The size of a community (the number of nodes in
a community) will usually be denoted by nc = |Cc|. When referring to
“the partition” this might be either to σ or to C, and should be clear from
context. We will mostly focus on undirected and unweighed graphs, but
most of these quantities can be straightforwardly extended to directed and
weighted graphs.

Although the overall objective—detect communities—might be clear,
what exactly constitutes a community is not undisputed. For example, one
can take into account the number of triangles within a community, the size
of the largest clique, or k-connectedness, and so forth. For example, tradi-
tional clustering works with notions of distance d(i, j) between node i and
j (Xu and Wunsch, 2008). We shall start from a first principle basis that is
due to Reichardt and Bornholdt (2006a). The basic idea is to only specify
the general framework, which can be made more specific, for example by
counting the number of triangles or common neighbours. A commonly ac-
cepted idea of a community is that it should be a relatively dense subgraph
that is relatively well separated from the rest of the graph. This means there
should be relatively:

1. many present links within communities;

2. few absent links within communities;

3. few present links between communities; and

4. many absent links between communities.

Taking these assumptions, we reward present links (ai j) and punish absent
links (bi j) within communities, while we punish present links (ci j) and re-
ward absent links (di j) between communities. Summarizing, we have the
following weights:

Ai j = 1 Ai j = 0
δ(σi ,σ j) = 1 ai j −bi j
δ(σi ,σ j) = 0 −ci j di j
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where all weights ai j, bi j, ci j, di j ≥ 0 remain to be specified and δ is the
Kronecker delta

δ(a, b) =

{
1 if a = b

0 if a 6= b
(2.3)

so that δ(σi ,σ j) = 1 if σi = σ j both i and j are in the same community, and
0 otherwise. We then denote byH the objective functionδ Kronecker delta

H(σ) = −∑
i j

[
ai j Ai j − bi j(1− Ai j)

]
δ(σi ,σ j)+[

−ci j Ai j + di j(1− Ai j)
]
(1− δ(σi ,σ j)).

The minus sign is only a matter of convention, and in this case we would
like to minimize this function. The optimization problem is then

min
σ
H(σ), (2.4a)

s.t. σ ∈ {1, . . . , q}n. (2.4b)

We will refer to H(σ) as the cost of a partition σ , and so the optimal parti-
tion has minimal cost. Now if we suppose that links within communities
should be equally rewarded/punished as links between communities, i.e.
ai j = ci j and bi j = di j, we can simplify to

H(σ) = −∑
i j

ai j Ai j(2δ(σi ,σ j)− 1)− bi j(1− Ai j)(2δ(σi ,σ j)− 1).

Since we are looking for the minimum ofH(σ) we can remove factors that
do not depend onσ , i.e. not depending on δ(σi ,σ j). Furthermore, any mul-
tiplication with a constant leaves the minimum unchanged. Using these
observations, we can simplify toH(σ)

H(σ) = −∑
i j
(ai j Ai j − bi j(1− Ai j))δ(σi ,σ j). (2.5)

This is the objective function we will analyse in this thesis, and forms the
core of our enquiry. The weights ai j and bi j remain to be specified, but are
assumed to be non-negative ai j, bi j ≥ 0.

Irrespective of the specific weights chosen, any community should be
connected. To show this, assume on the contrary there is a community C
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which is disconnected, so that for some partition C = S∪ S′, with S∩ S′ =
∅, there are no edges from S to S′. In that case, if we split the community
into S and S′, we decrease the cost function assuming there is at least one
bi j > 0, so that it cannot be optimal.

Different choices for the weights ai j and bi j lead to different methods for
community detection. For example, we could imagine taking into account
the number of common neighbours between i and j for absent links, so that
bi j = |N(i) ∩ N( j)|, or the number of independent paths between i and j,
similar to the original algorithm of Girvan and Newman (2002). Numerous
choices could be made, and we will review some of the possibilities.

2.2.1 Reichardt and Bornholdt

One choice consists of comparing the original network to a randomized
network, a random null model, as considered by Reichardt and Bornholdt
(2006a). Let us assume the probability for a link is pi j, which we will spec- pi j link probability

ify later. The weight of a missing link is bi j = γRB pi j, while the weight of
a present link is ai j = wi j − bi j, where wi j is the weight of the (i, j) link, or
wi j = 1 if the graph is not weighed and γRB a parameter used to weigh the
importance of the randomized network. Summarizing, the weights are

ai j = wi j −γRB pi j, (2.6a)

bi j = γRB pi j. (2.6b)

In other words, whenever a link has more weight than expected in the
randomized network, we reward that link if it is within a community. In-
cluding a missing link in a community would be punished slightly if the
expected weight of a link is low. Working out this choice leads to HRB RB model

HRB = −∑
i j

[
(wi j −γRB pi j)Ai j −γRB pi j(1− Ai j)

]
δ(σi ,σ j)

= −∑
i j

[
wi j Ai j −γRB pi j

]
δ(σi ,σ j) (2.7)

In the following we will assume that the graph is unweighed and that
wi j = 1. We can rewrite Eq. (2.7) slightly to gain some additional insight.
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We gather the terms per community, and arrive at

H = −∑
i j
(Ai j −γRB pi j)δ(σi ,σ j)

= −∑
c

∑
i j
(Ai j −γRB pi j)δ(σi , c)δ(σ j, c).

So if we write
ec = ∑

i j
Ai jδ(σi , c)δ(σ j, c)

for the number2 of edges in community c and

〈ec〉pi j = ∑
i j

pi jδ(σi , c)δ(σ j, c)

for the expected number of edges in community c, we can rewrite Eq. (2.7)
as

H = −∑
c

[
ec −γRB〈ec〉pi j

]
.

In general, the average of some quantity will usually be denoted by 〈·〉〈·〉 average

In other words, this objective function considers the difference between
the actual number of edges within a community and the expected number
of edges within a community given a random null model. Hence, there
are two ways for improving this function: by having more edges within
a community, or by having less expected edges within a community. The
expected edges weigh more heavily with higher γRB, so that it effectively
constrains the community sizes. But we will get back to this later on.

Various random null models can be chosen to specify pi j. One possi-
bility is to take a simple Erdös-Renyí (ER) graph (Bollobás, 2001) whereErdös-Renyí graph

each link3 appears with the same probability p = m/n2, where m = |E| the
number of edges and n the number of nodes. We then set

pi j = p =
m
n2 .

The expected number of edges within a community is then simply

〈ec〉p = pn2
c

2Technically twice the number of edges in community c for undirected graphs
3We here include the possibility of self-loops
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where nc is the number of nodes of community c. In this case the density
within a community is expected to be about the same as the density of the
graph in general. The objective function as a sum over communities then
simplifies to

HRB = ∑
c

[
ec −γRB pn2

c

]
.

However, an ER graph is not realistic in the sense that the degree ki = ki degree

∑ j Ai j of a node deviates from what is empirically expected. An ER graph
has a Poissonian degree distribution so that degree distribution

Pr(k) =
〈k〉ke−〈k〉

k!
,

while in reality the degree distribution is highly skewed and heavy tailed,
and follows more a power law (Newman, 2010)

Pr(k) ∼ k−τ .

So, another common null model is the configuration model, which takes configuration
modelinto account the degree. A simple way to construct a randomized network

with the same degrees is to cut all links in half, so that each link has ki stubs
(one half of a link), and to connect all the stubs randomly. We then arrive
at the expected number of links between i and j of

pi j =
kik j

2m
. (2.8)

The derivation of the quantity is as follows. We have ki ways to choose a
stub from node i, since it has ki stubs to connect. Similarly, we have k j ways
for choosing to connect to node j. Finally, we choose from 2m stubs (twice
for each link). The expected number of links within a community is then

〈ec〉conf =
K2

c
2m

, (2.9)

where Kc := ∑i kiδ(σi , c) is the sum of the degrees of the nodes in com-
munity c. If the total degree is relatively high, we expect more edges to
fall within the community. Notice that this no longer corresponds to the
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density of a community. The objective function becomes

HRB = ∑
c

[
ec −γRB

K2
c

2m

]
. (2.10)

The classical modularity can then be derived by taking γRB = 1, us-
ing the configuration model, and normalize by 1

2m and inverse the sign to
arrive at

Q =
1

2m ∑
i j

(
Ai j −

kik j

2m

)
δ(σi ,σ j). (2.11)

or as a sum over communities, which is sometimes easier to use,

Q = ∑
c

[
ec

2m
−
(

Kc

2m

)2
]

, (2.12)

and we retrieve the definition provided in Eq. (2.2).

2.2.2 Arenas, Fernández and Gómez

A particular problem of modularity (and the RB model in general) is the so-
called resolution limit, which we will analyse more in-depth later on (see
Chapter 3). The basic problem in the resolution limit is that communities
are merged together while they actually shouldn’t. This problem can be
addressed to a certain extent by the resolution parameter γRB in the RB
model, but other solutions have been proposed. One noteworthy solution
by Arenas, Fernandez and Gomez (2007) (AFG) consists of adding self-
loops to nodes so as to prevent these nodes from being merged. In other
words, they use almost the same weights as RB, but then adapted for the
added self-loops of strength γAFG. This idea translates into the weights

ai j = wi j − bi j, (2.13a)

bi j = pi j(γAFG)−γAFGδi j, (2.13b)

where δi j = δ(i, j) = 1 if i = j and zero otherwise. The authors use the
classical configuration model for the null-model, and use

pi j(γAFG) =
(ki +γAFG)(ki +γAFG)

2m + nγAFG
. (2.14)

Their model then becomes (up to multiplicative scaling)HAFG AFG model
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HAFG(σ) = −∑
i j

(
Ai jwi j +γAFGδi j − pi j(γAFG)

)
δ(σi ,σ j) (2.15)

which is simply Eq. (2.7) with self-loops added. The benefit of this method
is that it leaves unchanged properties that depend on the eigenvectors or
on the difference of the eigenvalues. In order to see that, observe that we
could also have transformed the original matrix A to A′ = A + γAFG In
where In is the n× n identity matrix, i.e. In = diag(1, . . . , 1). Now suppose In identity matrix

that λ is an eigenvalue and v the corresponding eigenvector of A (i.e. Av = eigenvalue
eigenvector

λv), then also A′v = Av+γAFG Inv = (λ+γAFG)v so that v is an eigenvector
of A′ and λ + γAFG an eigenvalue of A′. Although the same idea could be
investigated using the ER null model this has not been considered. Notice
that the AFG model is indeed different from the RB null-model and that
the two are only equal for γAFG = 0 and γRB = 1 in general.

2.2.3 Ronhovde and Nussinov

Ronhovde and Nussinov (2010) (RN) do not include any null model, in
order to avoid issues with the resolution limit, and in general set

ai j = wi j, (2.16a)

bi j = γRN, (2.16b)

(although for specific networks, such as with negative weights, they allow
some minor changes). Working this out we obtain HRN RN model

HRN(σ) = −∑
i j
(Ai j(wi j +γRN)−γRN)δ(σi ,σ j). (2.17)

Notice that for unweighed graphs (i.e. wi j = 1) up to rescaling this is
equal to

HRN(σ) = −∑
i j

(
Ai j −

γRN

1 +γRN

)
δ(σi ,σ j). (2.18)

If we compare this to the RB model with an ER null model, the RN model
is equal to the RB model if

γRN =
1−γRB p
γRB

.

For weighted graphs, the models are not necessarily the same however.
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2.2.4 Constant Potts model

A formulation that also has no null model, similar to Ronhovde and Nussi-
nov, but which resembles more closely the RB model is provided by

ai j = wi j − bi j, (2.19a)

bi j = γCPM, (2.19b)

which results inHCPM CPM
model

HCPM = −∑
i j
(Ai jwi j −γCPM)δ(σi ,σ j). (2.20)

We call this the Constant Potts Model because it only compares the net-
work to a constant parameterγCPM (Traag, Van Dooren and Nesterov, 2011b).

As can be expected, this model is rather similar to the RN model and
the RB model. The RB and RN model are equivalent if γCPM = γRB p and
the ER null model is used. The RN model is only equal to the CPM model
for unweighed graphs, in which case we have γCPM = γRN

1+γRN
.

2.2.5 Label propagation

Finally, the label propagation (LP) method (Raghavan, Albert and Kumara,
2007) can be shown to be equivalent to the Potts model (Tibély and Kertész,
2008)

ai j = wi j, (2.21a)

bi j = 0. (2.21b)

which results in the trivially optimizedHLP LP model

HLP = −∑
i j

Ai jwi jδ(σi ,σ j) (2.22)

This model is equivalent to the RB model, the RN model and CPM as
long as γRB = γRN = γCPM = 0. This is the least interesting formula-
tion, since there is only one global optimum, namely all nodes belong to
a single community, which is trivial. However, the local minima could be
of some interest. Furthermore, these local minima can be relatively quickly
found, rendering the complexity of the associated algorithm essentially lin-
ear (Raghavan, Albert and Kumara, 2007).
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2 Community detection

2.2.6 Random walker

There are also some other derivations of modularity (and some of the oth-
ers models) in terms of a random walk on a graph, by Delvenne, Yaliraki
and Barahona (2010). They focus on the time it takes for a random walker
to escape from a community. Since a random walker should be trapped
within a community for a considerable time, if we try to maximize how
long the walker will remain in the same community, we should find com-
munities.

Let us take a look to how we can represent such a random walk on arandom walk

graph. Suppose we start our walk with a certain probability π(0) in some
node, so that πi(0) gives the probability we start in node i. The random
walker simply follows each link with uniform probability. So, from a node
i, it follows the link (i, j) with probability 1/ki. If we define M = (D−1 A)>

where D = diag(k1, k2, . . . , kn) has the degrees on the diagonal, then Mi j
gives the transition probabilities for moving from node i to j. The proba-
bility we are in a certain node after a single step is then π(t + 1) = Mπ(t),
and so π(t) = Mtπ(0). If we assume the network to be (strongly) con-
nected and aperiodic, this matrix is primitive, and according to the Perron-
Frobenius theorem, in the limit

lim
t
π(t) = π = Mπ (2.23)

this probability becomes stationary, and π is the dominant eigenvector of
M. So, after a sufficient long time, each node will be visited with probabil-
ity πi.

Now let us give each node some label σi. Suppose the random walker
records the labels σi of nodes visited in a random variable Xt, so that if
the random walker was in node i after t steps, then Xt = σi. As stated,
we would like to know whether the random walker remains in the same
community for a long time. Suppose that the label σi of a node indicates
the community. If a random walker stays within the same community, the
random variable Xt is likely to be the same. This can be measured through
the autocovariance between Xτ and Xτ+t with t > 0, which is defined asautocovariance

Cov(Xτ , Xτ+t) = E(XτXτ+t) +E(Xt)
2.

The expected value of Xt can be easily calculated, if we assume the random
walk to become stationary. In that case, E(Xt) = ∑iσiπi = σ>π = π>σ ,
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and so
E(Xt)

2 = (σ>π)(π>σ) = σ>ππ>σ .

To calculate E(XτXτ+t) at stationary we obtain that

E(XtXt+τ ) = ∑
i
σiπi(Mtσ)i = σ

>ΠMtσ ,

where Π = diag(π). We encode σ = Sα where α = (1, . . . , q) and S is the
n× q community matrix, such that Sic = 1 ifσi = c node i is in community
c and 0 otherwise (see also section 2.3.4). We can then write the covariance
as

Cov(Xτ , Xτ+t) = α
>R(t)α

where
R(S, t) = S>(ΠMt − π>π)S

is the so called stability matrix. Each element R(S, t)cd denotes the proba- stability matrix

bility to start in community c and go to community d after t steps minus
the probability two random walkers are in c and d. Since we are interested
in maximizing the time spent inside a community, we would like to maxi-
mize R(S, t)cc. In other words, we would like to find maxS Tr R(S, t) where
Tr X = ∑i Xii is the trace of some matrix X. However, we should remain trace

within the community for all time up to t. So we define the stability of a
partition S at time t as

r(S, t) = min
τ<t

Tr R(S, τ).

and we would like to maximize this r(S, t) for some t. In general, we can
write

Tr R(S, t) = ∑
c

S>c (ΠMt − π tπ)Sc = ∑
i j
(Π(Mt)i j − πiπ j)δ(σi ,σ j).

If the random walk is undirected, we have that πi =
ki

2m . Now suppose we
look at only a single step, or t = 1, so that we obtain that

Tr R(S, 1) =
1

2m ∑
i j

(
Ai j −

kik j

2m

)
δ(σi ,σ j).

Hence, we recover exactly modularity for time t = 1 on undirected net-
works. For directed networks this quantity differs from the null model
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originally proposed for directed networks (Leicht and Newman, 2008).
Approximating this equation around t = 1, a different interpretation of the
resolution parameter for the RB model is obtained, namely that γRB ≈ 1/t.
However, this only holds approximately. Furthermore, some related type
of (continuous time) random walk gives an alternative derivation for the
RB model with an ER null model (Lambiotte, Delvenne and Barahona,
2008).

2.2.7 Infomap

A quite successful method that unfortunately doesn’t fit within this frame-
work is Infomap (Rosvall and Bergstrom, 2008, 2011). We include a brief
description of this method since it is one of the best performing methods
outside of this framework, although certainly not the only one (see Lan-
cichinetti, Radicchi, Ramasco et al., 2011; Aldecoa and Marín, 2013). It is
based on ideas of information theory, which we will briefly explain. Infor-
mation theory concerns itself with the representation of information, and
naturally involves also the compression of information. For example, if we
have a very long piece of text which reiterates “Help! Help! Help! Help!
Help!”, it would be more efficient to simply write “Help! (5×)”. In a sim-
ilar fashion, one can imagine being able to compress other information,
which these days is often used when creating .zip files, but also in videos
(.mp4), images (.jpg) or music (.mp3).

Infomap focuses on trying to compress the list of nodes visited by a
random walker on a graph. We record all the nodes a walker has visited,
for example “1, 5, 3, 2”, meaning that the walker first visited node 1 then 5,
then 3 and finally 2, similar to the random variable Xt in the previous sec-
tion. If we continue this walk for a very long time, we expect him to spend
a reasonable amount of time in the same community. We may use this to
represent the list of all nodes the walker has visited in a more efficient way.
Hence, the idea of a random walker is similar to the previous section, al-
though the objective is different: previously the focus was on staying in
the same community as long as possible, while here the focus is on having
a description of the random walk which is as short as possible.

Let us first briefly review the basics of information theory.

Information theory

Information theory mostly deals with how information can be represented
and quantified (MacKay, 2003; Cover and Thomas, 2012). The information
value of a certain event is logarithmically inverse to the probability of it
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occurring. In other words, suppose that X is a random variable and that
Pr(X = x) = p(x), then the information associated with event x is I(x) information

I(x) = log
1

p(x)
= − log p(x). (2.24)

This has two nice properties: (1) the information associated with two inde-
pendent identically distributed events x is then 2I(x) so contains twice the
information; and (2) if x is sure to happen, so when p(x) = 1, it contains
no information and I(x) = 0. The maximum information about a certain
event is then when p(x) → 0, which makes sense. After all, if x happens
almost never, it provides much information when it actually does happen.

Given a certain distribution p(x) we can also ask what is the expected
information associated with the random variable X. This measure is also
known as the entropy, and can be written as H(X) entropy

H(X) = E(I(X)) = −∑
x

p(x) log p(x). (2.25)

If we look at the probability of X given Y, or Pr(X = x | Y = y) =

p(x | y), the information content associated to x given y is then I(x | y) =
− log p(x | y). The entropy of H(X | Y = y) is then

H(X | Y = y) = −∑
x

p(x | y) log p(x | y),

hence the conditional entropy is H(X | Y)
conditional

entropy

H(X | Y) = E(H(X | Y = y)) = −∑
y

p(y)∑
x

p(x | y) log p(x | y)

= −∑
xy

p(x, y) log
p(x, y)
p(y)

. (2.26)

Notice that if Y and X are independent random variables, then H(X | Y) =
H(X), and otherwise H(X | Y) ≤ H(X). In other words, conditioning
always decreases the entropy. Furthermore, if X is completely determined
by Y then H(X | Y) = 0, which makes sense since knowing Y we also
know X. Similarly, the joint entropy can be defined as H(X, Y) joint

entropy

H(X, Y) = −∑
xy

p(x, y) log p(x, y), (2.27)
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and hence

H(X, Y) = H(Y, X) = H(Y | X) + H(X),

= H(X | Y) + H(Y).

If X and Y are independent random variables then H(X | Y) = H(X), and
so H(X, Y) = H(X) + H(Y). Since H(X | Y) ≥ 0, we have H(X, Y) ≥
H(X) and H(X, Y) ≥ H(Y), and so the joint entropy is always larger than
the entropy of a single random variable.

Now suppose we wish to represent a series of random variables, which
are independently identically distributed (iid) with distribution p(x). Iniid

this context it is common to talk about symbols and a code to representsymbol
code

that symbol. For example, suppose that our distribution gives the symbol
a with probability pa and b with probability pb, and likewise pc and pd.
We will usually represent codes of symbols in binary code, and so we can
represent the symbols by using the following code.

Symbol Code
a 00
b 01
c 10
d 11

Here the code length bi = 2 for all codes i. So, the code for the sequence
“adba” is then “00110100”. However, if we know that some symbols occur
more often then others, we might want to assign shorter codes to symbols
that are more often used. For example if the symbols occur with probabil-
ities pa = 0.6, pb = 0.2 and pc = pd = 0.1, we could use the following
codes.

Symbol Code
a 0
b 10
c 110
d 111

Notice that the code for a is shorter ba = 1, but the codes for c and
d are longer, bc = bd = 3. The code for the same sequence as before is
now “0111100”, which has a total length of 7 bits, while the original code
used 8 bits. Notice that we can identify the codes unambiguously, because
no code appears in the beginning of another code, a property known as
prefix-free. In general, if we look at the expected code length per symbol,
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this is

∑
i

pibi = 0.6 · 1 + 0.2 · 2 + 0.1 · 3 + 0.1 · 3 = 1.6

using the adapted code, while for the original codes this was ∑i pibi =

2. So, we improved the representation of this sequence by changing the
codes. The idea is now that the number of possibilities for a codeword
of a length bi should be inversely proportional to its probability, so that
2bi = 1/pi, or the number of bits4 bi = − log pi. Rare symbols then get
long codes, and often occurring symbols shorter codes. The expected code
length per symbol is then

∑
i

pibi = −∑
i

pi log pi = H(X).

The amazing thing is that this is also the optimal code length per symbol.
In other words, we cannot represent the information in a shorter code per
symbol than the entropy. This is known as the famous Shannon source-
coding theorem (Cover and Thomas, 2012). The actual codes attaining this
bound are known as Huffman codes. For our purposes here, we do not
need this machinery, and we will not discuss it further.

Compressing random walks

How can we use compression to find communities? As stated, we ex-
pected a random walker to remain in the same community for a substantial
amount of time. The ingenious idea is then that as long as we remain in
the same community we can use shorter codes for nodes in the same com-
munity. That is, we can use the same code for two different nodes in two
different communities. Compare it to calling somebody on a land line. If
you need to call someone within the same village (or even organisation)
you usually only need a few numbers. For example, you dial your best
friend with the phone number “1105”. Now if you want to call somebody
in another village (with number “38”), you will first have to dial out (us-
ing the code “0”), then dial the access code and then the phone number
again. For example, your other friend lives in another town and you dial
“0-38-1105”. Notice that the actual phone number can be the same for both
friends: “1105”. This is the same idea for the random walker: nodes in
different communities can reuse the same code.

If we do not consider any partition, by Shannon’s source coding theo-
4This could be expressed in a different base as well. Since the base only changes the prop-

erties up to a multiplicative constant, we ignore this and simply take the natural logarithm.
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rem, we can represent the list of nodes visited with H(X) = −∑i πi log πi
bits per step, where πi are the stationary probabilities of the random walker
as derived in Eq. (2.23). If we do consider a partition σ , we can reuse the
same codes for nodes in different communities, which should shorten the
average code length for that community.

The probability that a random walker stays within a community is then

ρc =
ec

Kc

where ec = ∑i j Ai jδ(σi ,σ j) the total number of edges as before, and Kc =

∑i kiδ(σi , c) the total degree. The probability to leave a community is then
of course 1− ρc. The probability a certain community is visited is then

qc = ∑
i
πiδ(σi , c).

We should also define a code for moving outside a community to an-
other community, similar to dialling a “0” for dialling out. We include this
code for exiting from community c in the entropy, in order to take it into
account. The entropy for moving within a community c (or exiting) is then

Hc = −∑
i

πi
qc + (1− ρc)

log
πi

qc + (1− ρc)

− 1− ρc

qc + (1− ρc)
log

1− ρc

qc + (1− ρc)
,

so that we can choose optimal codes of average code length Hc for that
community. In addition, if the random walker exits from a community,
the average code length for indicating to which community the random
walker goes is then

Hq = −∑
c

qc log qc

With probability qc we then incur the average code length of Hc while with
probability (1− ρ) := ∑c(1− ρc) we incur the cost of switching communi-
ties. So, the total expected code length is then

L(σ) = (1− ρ)Hq +∑
c

qcHc. (2.28)

This is known as the map equation, and we try to minimize this expected
code length. The derivation here is slightly different from the original (Ros-
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vall and Bergstrom, 2008), but is similar in spirit. Unlike the other models,
we will not analyse this model in great detail, but it is included for the sake
of completeness.

2.2.8 Alternative clustering methods

As stated earlier, the approach of community detection is somewhat recent,
and different approaches have been used before. There exists a multitude
of general clustering techniques, such as hierarchical clustering or k-means
clustering, which are usually applied to datasets in some Euclidean space
(Xu and Wunsch, 2008; Everitt, Landau and Leese, 2001; Kolaczyk, 2009;
Jain and Dubes, 1988). By using some graph similarity (or distance) type of
measure, it is possible to apply these existing techniques on graphs (Scha-
effer, 2007). Hierarchical clustering for example merges two groups de-
pending on the similarity of the two groups (taking a greedy outlook),
thus resulting in a dendrogram of merges. The k-means method tries to
iteratively minimize the average within cluster distances by minimizing
the distance to some cluster average.

Similarities between nodes can be derived in many different ways. One
such similarity measure can for example be derived by considering the
expected commuting time to go from node i to node j in a random walk
on a graph (Yen, Fouss, Decaestecker et al., 2009). This can be based on the
graph Laplacian, which is defined as Laplacian

L = D− A, (2.29)

where A is the adjacency matrix and D = diag(k1, . . . , kn) is the diagonal
degree matrix. Notice that

u>Lu = ∑
i j

uiLi ju j

= ∑
i j

[
uiδi jkiu j

]
−∑

i j

[
ui Ai ju j

]
= ∑

i j
Ai j(ui − u j)

2

so that L is positive-semidefinite and has only non-negative eigenvalues.
We won’t go into the details, but the expected commuting time Ci j to go
from node i to node j can be expressed as (Fouss, Pirotte, Renders et al.,
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2007)
Ci j = 2m(ei − e j)L+(ei − e j) (2.30)

where ei is the ith basis vector and L+ is the pseudo inverse of the Laplacian

L+ =

(
L− 1

n

)−1
+

1
n

. (2.31)

It can be proven that Ci j is a proper distance metric, which can then be
used in other clustering techniques for further processing.

Another approach also based on the Laplacian is that of spectral graph
partitioning (for detail, see Newman, 2010; Bichot and Siarry, 2011). This
idea is based on trying to minimize the cut-size. Assume we have some
vector s ∈ {−1, 1}n, where si = −1 indicates node i is in group 1 and if
si = 1 it is in group 2. Then the total number of edges running between the
two groups can be written as

∑
i j

Ai j
1
2
(1− sis j) =

1
2

s>Ls. (2.32)

Realising that 1
2 (1 − sis j) = 1 − δ(σi ,σ j), we then recognize the trivially

optimized label propagation method (LP) from Eq. 2.22. The trivial solu-
tion is simply s = (1, . . . , 1) in which case s>Ls = 0. That is why often
in this context an additional constraint is imposed, namely that the two
groups should be of roughly equal size. Solving this leads to the eigenvec-
tor u2 corresponding to the second-smallest eigenvalue λ2 of the Laplacian
L, and setting si = sgn(u2i). This eigenvector is also known as the Fiedler
vector. The first eigenvalue λ1 = 0, and the second eigenvalue λ2 is only
zero if the graph is disconnected. For this reason, it is also known as the
algebraic connectivity. There are also other variants of spectral graph par-
titioning, for example based on the normalized Laplacian D−1L, but we
won’t treat them here.

2.3 Algorithms

In this section we will review some of the more common algorithms for
optimizing modularity (and some of its alternatives). The problem of com-
munity detection is NP-hard in general (Brandes, Delling, Gaertler et al.,
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2006), so that there is no (known5) efficient (polynomial time) algorithm
for optimizing the objective function. The algorithms presented will thus
be heuristics, and usually involve some stochasticity. This implies that it
will not necessarily always find exactly the same partition. In fact, modu-
larity often seems to have many near optimal partitions, making it difficult
to obtain the global optimum, and the other methods are expected to show
a similar degeneracy (Good, de Montjoye and Clauset, 2010).

In order to test whether an algorithm is working correctly, and per-
forms well, it is useful to construct test networks. These test networks—
also known as benchmark networks—are constructed such that the com-
munity partition is known beforehand. Comparing the known partition to
the partition detected by the algorithm provides evidence of how well the
algorithm is performing. We will test some of the methods, and present
their results. In spite of the NP-hardness of the problem, and that the algo-
rithms are only heuristic, we will see they work reasonably well.

2.3.1 Simulated annealing

Simulated Annealing (SA) is a general optimization technique (Kirkpatrick, Simulated
Annealing (SA)

Gelatt and Vecchi, 1983). The idea is that the search is allowed to explore
a large part of the landscape at the beginning, but as the algorithm pro-
gresses, follows more and more the steepest descent trajectory (greedily)
towards a (local) minimum. The basic idea is to analyse the difference ∆H
in the objective function ∆H = Hafter − Hbefore when making a certain
change to the partition. We will use ∆H = Hafter − Hbefore throughout
this thesis, so that ∆H < 0 will always mean there is an improvement after
some change, while ∆H > 0 indicates the prior situation was better (re-
member we are minimizing H). Such a change can take many forms, but
the changes usually considered are: moving a single node from one com-
munity to another; merging two communities; or splitting a community.

There are several choices available for accepting such a change. The
idea is to also accept changes that worsen the partition (i.e. when ∆H > 0)
with some probability that decreases as the algorithm progresses. The
implementation from Reichardt and Bornholdt (2006a) works as follows.
Consider moving node i from community c to d, and let the new com-
munities be c′ and d′. In terms of the community set we thus have that
C′c = Cc \ i and C′d = Cd ∪ i. The change in the objective function is then ∆H(σi = c 7→ d)

move node

5It is unlikely that any efficient algorithm will ever be found, part of the famous P = NP
problem.
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∆H(σi = c 7→ d) = (eid′ −γRB〈eid′〉)− (eic′ −γRB〈eic′〉) (2.33)

where eic′ = ∑ j Ai jδ(σi , c′) is the number of edges from node i to com-
munity c′ and 〈eic′〉 = ∑ j pi jδ(σi , c′) the expected number of edges from
i to community c′, and similarly so for d′. We consider all communities
to which node i is connected, and the associated change in the objective
function of ∆H(σi = c 7→ d). We then choose the new community with
probability

Pr(σi = d) =
1
Z

exp
[
−β∆H(σi = c 7→ d)

]
, (2.34)

where Z = ∑d expβ∆H(σi = c 7→ d) is the normalization factor. This
is known as the Boltzmann probability distribution (Jaynes, 1957). The pa-Boltzmann

distribution
rameterβ = 1/T is known as the inverse temperature. A high temperature
(low β) gives nearly uniform probabilities, so that every change is chosen
with almost equal probabilities. As the algorithm progresses, the temper-
ature is lowered, for example after n changes, usually via T′ = αT where
0 < α < 1 is some decay factor. Lower temperature leads to more narrow
choices, and in the limit of T → 0 only the move(s) with the maximum
improvement of the objective function is chosen.

An alternative scheme was proposed by Guimerà, Mossa, Turtschi et al.
(2005); Guimerà, Sales-Pardo and Amaral (2004). Instead of considering all
possible changes, we simply choose a random new community for a node.
Similarly, a change can consist of merging two communities. Finally, a
change can consist of splitting a community in two. All changes have a
certain associated change in the objective function of ∆H and the change
is accepted with probability

Pr(accept change) =

{
1 if ∆H < 0,

exp(−β∆H) if ∆H ≥ 0.
(2.35)

The change for moving a node i from community c to community d is al-
ready provided in Eq. (2.33). The change when merging two communities∆H({c, d} 7→ c′)

merge
communities c and d into one new community c′ is then

∆H({c, d} 7→ c′) = −ecd +γRB〈ecd〉pi j (2.36)

while the splitting of community c′ into c and d is just the opposite∆H(c′ 7→ {c, d})
split communities

42



Algorithms

∆H(c′ 7→ {c, d}) = −∆H({c, d} 7→ c′), (2.37)

with ecd = ∑i j Ai jδ(σi , c)δ(σ j, d) the number of edges between c and d and
〈ecd〉 the expected number of such edges. A random split is unlikely to
improve the partition, so some additional effort should be made to find a
reasonably good candidate split, for example by using the eigenvector split
(see Section 2.3.4), but we will not consider that here.

For both implementations the general idea remains the same. We con-
sider a number of changes, which are accepted with a certain probability.
After a certain number of changes, we lower the temperature, and repeat
the procedure. When the objective function is no longer improved, the
procedure terminates. The method moving only nodes is provided in Al-
gorithm 1.

The exact calculations depend on the null model used. For the config-
uration null model, we have that 〈ec〉 = K2

c /2m, and if we work out we
obtain

∆H(σi = c 7→ d) = eid′ − eic′ −γRB
ki
m
(Kd − Kc + ki) (2.38a)

∆H({c, d} 7→ c′) = γRB
KcKd
2m
− ecd (2.38b)

∆H(c′ 7→ {c, d}) = ecd −γRB
KcKd
2m

, (2.38c)

for respectively joining nodes, merging communities and splitting com-
munities. For the ER null model, with 〈ec〉 = pn2

c where nc is the size of
community c, we obtain

∆H(σi = c 7→ d) = eid − eic −γRB p((nd + 1)− (nc − 1)) (2.39a)

∆H({c, d} 7→ c′) = γRB pncnd − ecd (2.39b)

∆H(c′ 7→ {c, d}) = ecd −γRB pncnd. (2.39c)

Similar calculations can be derived for the other models.

2.3.2 Greedy improvement

Graph partitioning itself is not new, and one heuristic method that has long
been used, and which resembles the steps from Simulated Annealing (SA),
is Kernighan-Lin (KL) improvement (Kernighan and Lin, 1970). Although
in the original formulation two nodes are swapped from their communities
in order to keep the community sizes the same, this is not necessary for
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Algorithm 1 Simulated Annealing (SA) method
function SA(Graph G)

initialize σi ← i for all nodes i
T ← some high number, β← 1

T
while improvement do

for all nodes i do
Cneigh ← {σ j | (i, j) ∈ E} ∪σi . Communities of neighbours
for all communities d ∈ Cneigh do

Pd ← exp(β∆H(σi = c 7→ d))
end for
σi ← RANDSAMPLE(P) . Draw random community

end for
T ← α ∗ T, β← 1

T . Lower temperature
end while
return σ

end function

modularity optimization. So, the greedy improvement we consider here
simply amounts to moving nodes from one community to another6. The
difference with SA is that we choose greedily the best new community. In
other words, the method loops (randomly) over all nodes, and determines
for each node the community with the largest ∆H. It repeats these steps as
long as there remain improvements.

More specifically, when considering node i we greedily check the in-
crease in the objective function ∆H(σi = c 7→ d) if the node was moved
from community c to d, as was already calculated in Eq. (2.33). Now in-
stead of choosing the new community with a certain probability as defined
in Eq. (2.34), we simply choose the community

s∗ = arg maxs ∆H(σi = r 7→ s) (2.40)

which maximizes the change. This can be seen as the limit of the simulated
annealing process for which T → 0 (or β → ∞). We consider all nodes
(perhaps in random order), and repeat until no further improvement can
be made.

6There are some other greedy algorithms as well, for example (Clauset, Newman and
Moore, 2004; Brandes, Delling, Gaertler et al., 2008)
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Algorithm 2 Greedy method
function GREEDY(Graph G)

initialize σi ← i for all nodes i
while improvement do

for all nodes i do
C← {σ j | (i, j) ∈ E} ∪σi . Communities of neighbours
for all communities d ∈ C do

∆d ← ∆H(σi = c 7→ d)
end for
σi ← arg maxd ∆d . Greedily, maximum choice

end for
end while
return σ

end function

2.3.3 Louvain method

The Louvain method for optimizing modularity (Blondel, Guillaume, Lam- Louvain method

biotte et al., 2008) is one of the fastest and best algorithms available for op-
timizing modularity (Lancichinetti and Fortunato, 2009). It makes changes
to the partition similar to the greedy improvement, i.e. it always makes
the optimal change at that moment. The trick that makes it so fast and
yet work well, is that whenever no more changes can be made by moving
nodes, we aggregate the graph, and rerun the same algorithm on the ag-
gregated graph. This is then repeated until modularity can be no further
increased.

Algorithm 3 Louvain method
function LOUVAIN(Graph G)
σ ← GREEDY(G) . Initial Greedy
Σ← σ . Use Σ for aggregate
while improvement do

G← AGGREGATE(G, Σ)
Σ← GREEDY(G) . Greedy on aggregate graph
σi ← Σσi for all i . Correct σ according to Σ

end while
return σ

end function

The important detail is then of course that moving nodes in the aggre-
gated graph should be equivalent to merging communities in the original
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graph. Hence, the aggregate method depends on the exact cost function
used. Using the configuration null-model allows for a particularly straight-
forward aggregation. In that case, the new aggregated weighted adjacency
matrix A′ is constructed as followsaggregated

community graph

A′cd = ∑
i j

Ai jδ(σi , c)δ(σ j, d) = ecd

which simply creates a new node c for each community, and an edge to
another new node community d has as weight the total number of edges
between community c and d. The essential thing is now that joining two
nodes in this graph A′ should be equivalent to merging two communities
in A. The benefit for joining nodes c and d in A′ is

∆H = −(A′cd −γRB
k′ck′d
m

)

which is equivalent to joining communities c and d in A since A′cd = ecd =

∑i j Ai jδ(σi , c)δ(σ j, d) the number of edges between communities c and d
and k′c = ∑d A′cd = ∑i j kiδ(σi , c) is the total degree in community c. Hence,
joining two nodes is indeed equivalent to merging two communities as
specified in Eq. (2.38b). This special feature of the configuration model
(and modularity) allows this formulation to exploit this.

Algorithm 4 Aggregation for configuration null-model
function AGGREGATE(Graph G, Community σ)

A← ADJACENCY(G)
A′cd ← ∑i j Ai jδ(σi , c)δ(σ j, d)
return A′

end function

When using the ER null model this way of aggregating does not work
correctly. Let us assume for an instance that we aggregated a graph accord-
ing to this method. The benefit of merging node c and d in this aggregate
graph, according to the ER null model is then

∆H = Acc + Add − A′cd −γRB p

while this should actually be

∆H = Acc + Add − A′cd −γRB pncnd
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where nc and nd are the number of nodes in community c and d. Using this
method of aggregating then clearly does not work.

In order to make this step of aggregating the graph work for the ER
null-model we need to introduce the node size. In the aggregate graph, node size

the node size will then represent the number of nodes in the community
(i.e. the community size). So, for the initial graph we set the node size
to ni = 1 for all nodes, and upon aggregating we will set the node size
nc = ∑i niδ(σi , c) of community c, i.e. the new node in the aggregated
graph, equal to the sum of the node sizes within the community.

Notice that we can use the same type of aggregation for CPM (and by
extension RN). Since we can also apply the greedy algorithm to CPM, the
Louvain method is easily applied to CPM as well.

Algorithm 5 Aggregation for ER null-model & CPM
function AGGREGATE(Graph G, Community σ)

A← ADJACENCY(G)
A′cd ← ∑i j Ai jδ(σi , c)δ(σ j, d)
nc ← ∑i niδ(σi , c)
return A′, n′

end function

2.3.4 Eigenvector

We can also take a matrix analysis perspective (Newman, 2006). If we de-
fine the modularity matrix B with entries B modularity

matrix

Bi j = ai j Ai j − bi j(1− Ai j) (2.41)

and S the n× q community matrix, such that Sic = 1 if node i is in commu- S community
matrix

nity c and 0 otherwise, we can write our objective function as

H = −∑
i j

∑
c

Bi jSicS jc = − Tr S>BS, (2.42)

since SicS jc = 1 ifσi = σ j = c and 0 otherwise, so that ∑c SicS jc = δ(σi ,σ j),
and ∑i SicSid = 0 for c 6= d. Here S> denotes the transpose of S (i.e. transpose

S>i j = S ji). Since each node should be in exactly one community, we
have the constraint that Sic ∈ {0, 1} and ∑c Sic = 1. From this it also fol-
lows that Tr S>S = n and that the columns of S are mutually orthogonal.
For undirected graphs B is symmetric (i.e. B = B>), and we can decom- symmetric
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pose B = UΛU> where Λ is a diagonal vector containing the eigenvalueseigenvalue
decomposition

λ1 ≥ λ2 ≥ · · · ≥ λn with U an orthogonal matrix (i.e. UU> = In is theorthogonal matrix

identity matrix) containing the associated eigenvectors. Plugging this in
leads to

H = − Tr S>UΛU>S

= − Tr ΛU>SS>U,

So, for all λi > 0 we should put as much weight as possible in U>i SS>Ui.
Without the constraint that Sic ∈ {0, 1} this would be simply optimized
by taking the column Si proportional to ui for λi > 0, and the rest 0. Be-
cause of the constraints that Sic ∈ {0, 1} this is not straightforward, and
usually only a partitioning in two groups is considered. This is known
as (recursive) spectral bisectioning. The basic idea is to recursively split
communities, until we can no longer divide the sub parts.

For spectral bisectioning,it is simpler to use a single vector s to indicatespectral
bisectioning two groups as si = −1 if i is in group 1 and si = 1 if i is in group 2. Then

1
2 (sis j + 1) = δ(σi ,σ j), and we can write

H = −∑
i j

Bi j
1
2
(sis j + 1)

which is up to a multiplicative and additive constant equivalent to

H = −s>Bs, (2.43)

with s>s = n. If we relax the problem by allowing s to take on real val-
ues, s>Bs is similar to a Rayleigh quotient, for which it is well known that
it is maximized by taking s proportional to u where u is the eigenvector
associated to λ1 the largest eigenvalue of B. Hence, if we take

si =

{
1 if ui ≥ 0,

−1 if ui < 0,

this is the vector s with si ∈ {−1,+1} for which ‖s− u‖ is minimal.

We can then recursively apply this method to a single community. Let
Bc be the nc × nc submatrix of B corresponding to community c. The im-
provement of H by dividing community c in two, again denoted by the

48



Algorithms

vector s ∈ {−1,+1}nc , can then be described by

∆H = −∑
i j

Bc
i j

1
2
(sis j + 1)− Bc

i j

which by removing parts that don’t depend on the optimization reduces to

∆H = −∑
i j

Bc
i jsis j = −s>Bcs (2.44)

similar as before. So, we follow the same procedure. However, we must
ensure that the total contribution is positive still, so that ∆H in Eq. (2.44)
must obey

∆H = −s>Bcs < −e>Bce

with e = (1, . . . , 1) the vector of all ones. In other words, as long as sub-
dividing puts more weight within the subdivided community as there is
in total within the community, we should continue splitting. Notice that
this is similar to the condition that ∆H(c′ 7→ {c, d}) > 0 for splitting com-
munity c′ into community c and d in Eq. (2.37). Furthermore, notice that
for the RB model with γRB = 1 we have that e>Be = 0 by definition of
modularity, so that we can use the same condition.

Algorithm 6 Recursive eigenvector bisection
function EIGENVEC(Modularity matrix B)

u← largest eigenvector of B

σi ←
{
−1 if ui ≥ 0,
1 if ui < 0.

if σ>Bσ > e>Be then . If improvement
Σ1 ← EIGENVEC(B(σ = −1,σ = −1)) . Submatrix for σi = −1
Σ2 ← EIGENVEC(B(σ = 1,σ = 1)) . Submatrix for σi = 1
σ ← Combine Σ1 and Σ2

else
σi ← 1 . Otherwise, don’t split

end if
return σ

end function
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2.4 Benchmarks

In order to know whether these algorithms and methods work effectively,
we now turn to methods for testing them. This involves two parts. First
we have to construct good test networks with some planted partition, so
that we can check if some community detection method is able to uncover
this planted partition. Secondly, we need some measure to compare the
computed partition to the planted partition. Finally, we will provide some
results comparing different methods.

2.4.1 Test networks

One of the first problems in generating test networks is that there is no
definitely agreed upon definition of a community. However, as stated ear-
lier, there is some consensus on some common features: the communities
should be relatively dense, and relatively well separated from the rest of
the network. Although specific details might not be agreed upon exactly,
this often is the foundation upon which test networks are constructed. Still,
we should keep in mind that different definitions of communities or good
partitions might yield a partition different from the planted partition. This
does not necessarily imply the method does not work correctly, because
the definition of community simply differs. Nonetheless, if some method
is unable to detect correctly the planted partition whereas other methods
do, it does indicate it might not be the appropriate method for these type
of test networks.

The first to propose such test networks were Girvan and Newman (2002),
and remained the common benchmark for some time (Danon, Díaz-Guilera,
Duch et al., 2005). In general, test networks are constructed as follows.
We wish to build a network of q communities of each nc nodes with aver-
age degree 〈k〉. The total number of nodes is then n = qnc and the total
number of edges m = 〈k〉n/2. Furthermore, we would like to control the
difficulty of detecting communities. The denser communities are, and the
better separated from the rest of the network, the easier it is to detect such
communities. Hence, we will introduce a mixing parameter 0 ≤ µ ≤ 1µ mixing

parameter
such that each node will have about (1 − µ)〈k〉 edges within its commu-
nity, and about µ〈k〉 edges outside its community. Such a network can be
easily constructed as follows. We pick a random node i and with probabil-
ity µ we will link to a node outside of its community, and with probability
1− µ we link to a node within its community. We will add in total 〈k〉n/2
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edges. Easily partitioned networks are constructed using a low µ and this
gets progressively more difficult for higher µ. The common test setting in-
troduced by Mark Newman used q = 4 communities of nc = 32 nodes
each, with µ varying from 0 to 1.

One question concerns until what point µ we expect communities to
exist. A reasonable limit is that the average density within a community
should be higher than the average density between communities. Beyond
this threshold communities become very fuzzy (regardless of the defini-
tion) and are unlikely to be detected by any method.

Let us first calculate the inner density for a community of size nc. Each
of the nc nodes has on average (1−µ)〈k〉 edges within its community, and
the density is therefore

pin =
(1−µ)〈k〉

nc − 1
. (2.45)

The rest of the µ〈k〉 edges per node will be distributed across the rest of the
network. Since these edges get distributed over n− nc nodes, they will be
more dispersed in general. The average density is then simply

pout =
µ〈k〉

n− nc
. (2.46)

A communities of nc nodes in the test network is then well-defined as long
as pin > pout, which yields

µ <
n− nc

n− 1
≈ q− 1

q
. (2.47)

In other words, the probability for a link within a community µ should be
smaller than the proportion of nodes outside the community. Notice this
is independent of the total size of the network, the average degree, and the
size of the communities, and depends only on the number of communities
q (up to a correction term of 1

nc
). For the regular test setting of q = 4

communities this yields µ < 0.75, contrary to what was believed earlier
that the communities would be defined up to µ = 0.5.

In fact, such a test network most closely resembles a random network
around µ ≈ (q − 1)/q. For smaller µ the network exhibits a community
structure. For higher µ however, the network still has a very particular
structure. In that case, there are few links within communities, and many
between communities. In other words, it starts to show a multi-partite
structure.
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Although such a test network is fine, it is far from realistic. Most net-
works show a skewed degree distribution with a fat-tail. They have many
nodes with a low degree, and some nodes with an extremely high degree.
The above test networks on the other hand have a Poissonian degree dis-
tribution, such that most of the nodes have about the same degree ki ≈ 〈k〉.
Most empirical results of community detection suggests the community
sizes are also highly skewed, while in these test networks each commu-
nity is of exactly the same size. This could lead to a potential bias when
benchmarking methods, since it only looks to whether a method can find
communities in this particular test setting. In order to overcome these is-
sues it was suggested to create test networks that have a power-law degree
and community size distribution by Lancichinetti, Fortunato and Radic-
chi (2008), now commonly known as the LFR benchmark. Additionally,
weights of links can be introduced, which realistically should also take a
power-law distribution. These weights can again be distributed differently
within and between communities.

Furthermore, many complex networks show some form of hierarchical
structure (Lancichinetti, Fortunato and Radicchi, 2008). In order to test for
this, hierarchical test networks would be needed. So, instead of only hav-
ing a single partition in communities, each community at the lowest level is
embedded in increasingly larger communities. Instead of specifying then
a single µ for the probability of having links outside the community, we
specify µ1,µ2, . . . ,µl for l different levels, with each level i being embed-
ded in the i − 1 level. Level 1 is then the coarsest, highest level, and l
the lowest most refined level. Of course, these probabilities are limited to
∑l µl < 1.

The limits of the densities remain rather similar, but now depend on
the level we are looking at. Let us take a look to a two level hierarchy. The
corresponding densities then are

pin
1 = (1−µ1)〈k〉/(nc,1 − 1)

pout
1 = µ1〈k〉/(n− nc,1)

pin
2 = (1−µ1 −µ2)〈k〉/(nc,2 − 1)

pout
2 = (µ1 +µ2)〈k〉/(n− nc,2)

where nc,1 is the community size at level 1 and nc,2 the community size at
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level 2. The second level then remains detectable until

µ1 +µ2 <
n− nc,2

n− 1
.

Similarly, the first level is well defined until

µ1 <
n− nc,1

n− 1
.

Both limits are similar to the original limit in Eq. (2.47) but, there is a trade-
off between the fine (µ2) and course level (µ1). Whenever the coarse level
is less well defined, the corresponding limit for the finer level becomes
smaller.

2.4.2 Comparing partitions

Once a test network with a known partition is available, we need a measure
for stating how well a certain method is able to recover this known parti-
tion. Various measures are suitable for this, but two of the most common
ones are the normalized mutual information (NMI) and the variation of in-
formation (VI). The NMI measures how much information we have about
one partition knowing the other. The VI is a true metric, and is closely re-
lated to the NMI. Benchmark results are usually provided in NMI, but VI
seems somewhat more sensitive to small deviations.

Both measures have their origins in information theory, of which the
basics has been provided in section 2.2.7 (see pp. 34–37). The mutual infor-
mation is defined as I(X, Y) mutual

information

I(X, Y) = H(X)− H(X | Y) = H(Y)− H(Y | X)

= H(X) + H(Y)− H(X, Y).

Hence, if X and Y are two independent variables, H(X, Y) = H(X)+ H(Y)
and I(X, Y) = 0. On the other hand, if X is completely determined by Y
then H(X, Y) = H(X) = H(Y) and I(X, Y) = I(X, X) = H(X). Hence,
we can normalize I(X, Y) by H(X) + H(Y) and arrive at at the normalized
mutual information NMI(X, Y)

normalized mutual
information

NMI(X, Y) =
2I(X, Y)

H(X) + H(Y)
, (2.48)

which is always 0 ≤ NMI(X, Y) ≤ 1. The Variation of Information (VI) VI(X, Y) variation
of information
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can then be defined as

VI(X, Y) = H(X) + H(Y)− 2I(X, Y), (2.49)

= 2H(X, Y)− H(X)− H(Y), (2.50)

Since I(X, Y) = H(X) if and only if X is completely determined by Y then
VI(X, X) = 0. Otherwise, since 2I(X, Y) ≤ H(X) + H(Y), we have that
VI(X, Y) ≥ 0. Furthermore, notice that VI(X, Z) ≤ VI(X, Y) + VI(Y, Z),
since the inequality

2H(X, Z)− H(X)− H(Z) ≤ 2H(X, Y) + 2H(Y, Z)

− H(X)− 2H(Y)− H(Z)

is equivalent to

H(X, Z) ≤ H(X, Y) + H(Y, Z)− H(Y)

H(X | Z) ≤ H(X | Y) + H(Y | Z).

The last inequality holds because

H(X | Y) + H(Y | Z)− H(X | Z)

≥H(X | Y, Z) + H(Y | Z)− H(X | Z)

=H(X, Y | Z)− H(X | Z) ≥ 0

In other words, the VI(X, Y) is a true metric, and can be interpreted to
provide a distance between the random variables X and Y. There are sev-
eral ways to normalize this quantity, for example by dividing by I(X, Y) or
by max{H(X), H(Y)}, but this is not often considered (Meilă, 2007; Lanci-
chinetti and Fortunato, 2009).

When it comes to comparing partitions, these quantities are used as
follows. Let C and D be two partitions, such that there are nc nodes in
community c in C, nd nodes in community d in D and ncd nodes that are
in community c in C and in community d in D. The probability a random
node is in community c is then pc = nc/n, and likewise we can define the
probability pcd = ncd/n. Working this out for mutual information, we thus
arrive at

I(C, D) = −∑
cd

ncd
n

log
(

n
ncd

ncnd

)
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and
H(C) = −∑

c

nc

n
log

nc

n
.

The other quantities follow readily. The baseline is that NMI = 1 (and so
VI = 0) whenever C = D the two partitions are equal. So when comparing
a method to the known partition, if a method works well, NMI ∼ 1, and
VI ∼ 0.

Other well known measures for comparing partitions are the (adjusted)
rand index and Jaccard index (Xu and Wunsch, 2008; Theodoridis and
Koutroumbas, 2006; Everitt, Landau and Leese, 2001). This is based on
checking how many pairs of nodes are clustered in the same manner. The
number of pairs of nodes that are clustered in the same way in both parti-
tions can be obtained as

a = ∑
cd

ncd, (2.51)

where ncd denotes the number of nodes that are in community c in partition
C and in community d in partition D. The number of pairs of nodes that are
clustered both in different communities—so the number of pairs of nodes
i and j such that they are not in the same community in partition C and
neither in partition D can be described by

b =

(
n
2

)
+∑

cd
ncd −∑

c
nC

c −∑
c

nD
c (2.52)

where nC
c refers to the number of nodes in community c in partition C.

Then the rand index is defined as

RI(C, D) =
a + b
(n

2)
, (2.53)

namely the fraction of pairs of nodes that are classified in the same man-
ner (belonging both to the same community is both partitions are both to
different communities in both partitions). This measure varies between 0
and 1 with 1 indicating two identical partitions C and D while 0 indicates
two completely different partitions. There exists an adjusted version which
takes into account the fact that the rand index for two random partition al-
ready attains some similarity. The Jaccard index is defined as

J(C, D) =
a

(n
2)− b

. (2.54)
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Compared to the VI both measures have some drawbacks (Meilă, 2007),
although no measure is perfectly fit for all situations. For benchmarks
in community detection however, the NMI has become the standard, al-
though the rand index, Jaccard index and other variants are used in other
domains.

2.4.3 Results

Not all models work equally well. We have tested extensively the RB
model using the configuration null model and the ER null model, CPM
and Infomap. For the RB model the “natural” parameter is γRB = 1, which
then corresponds to modularity for the configuration model. For Infomap
there is no parameter present, so there is little to choose there. For CPM
there is no such “natural” parameter, and one would have to look which
γCPM works best (we will touch upon this issue in section 4.1). However,
given that we know how we generate the benchmark networks, we can
calculate the optimal parameter γ∗CPM for uncovering the planted partition.
Since the CPM model and the RB model are equal for the ER null model
when using γCPM = γRB p, this also corresponds to the optimal parameter
for the RB model with the ER null model. For the configuration null model
we can choose a similar optimal parameter value, in order to detect the
planted partition as well as possible.

Let us calculate this optimal parameter value. We denote by pin the
average density within a community, and by pout the average density be-
tween a community and the rest of the network. For CPM to correctly de-
tect these communities we should then set γCPM > pin so that it doesn’t
split communities of that density, while γCPM < pout so that it doesn’t
merge communities either. We have already calculated these densities be-
fore in Eq. (2.45) and (2.46), and we set

γ∗CPM = γ∗RB p =
〈pin〉+ 〈pout〉

2

where 〈pin〉 indicates we have taken the average pin over all community
sizes.

In order to calculate a similar optimal resolution parameter for the con-
figuration model, notice that we should have that the inner “degree den-
sity” p̃in = ec

〈ec〉conf
should be lower than γRB, while the outer “degree den-

sity” should be higher than γRB. The number of edges within a community
is simply ec = nc〈k〉(1− µ), and the expected sum of degrees Kc = nc〈k〉.

56



Benchmarks

Furthermore, the total number of expected edges is 2m = n〈k〉, so that we
obtain

p̃in =
ec

〈ec〉conf

=
nc〈k〉(1−µ)

(nc〈k〉)2

n〈k〉

=
n(1−µ)

nc
.

The outer “degree density” can be similarly calculated. The number of
external edges remains ec∗ = ncµ〈k〉 as before (where the ∗ denote the rest
of the network). The expected number of edges is 〈ec∗〉 = KcK∗/2m, and
so becomes 〈ec∗〉 = nc(n− nc)〈k〉2/2m, so that the outer “degree density”
is

p̃out =
ec∗

〈ec∗〉conf

=
ncµ〈k〉

nc(n−nc)〈k〉2
n〈k〉

=
µn

n− nc
.

Similar as before, we set the RB resolution parameter for the configuration
model at

γ∗RB =
〈 p̃in〉+ 〈 p̃out〉

2

Notice that we can do a similar analysis as before, trying to calculate
the point at which communities are no longer well defined, but use the
“degree densities” to do so. Working out the inequality p̃in > p̃out we
obtain that up until

µ <
n− nc

n
≈ q− 1

q

the communities are well defined. Hence, this does not change anything
in comparison to our earlier analysis in Eq. (2.47).

The results for the different methods are displayed in Fig. 2.1. On the
y-axis it shows the NMI as defined earlier, while on the x-axis the mixing
parameter µ is shown. For each value of the mixing parameter µ we gen-
erate 100 LFR benchmark networks. We have used the Louvain algorithm
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Fig. 2.1 Benchmark results

for all models, since earlier analysis showed the Louvain algorithm works
at least as well as many other algorithms, but is much faster. For a more
extensive comparison between different algorithms, refer to Lancichinetti
and Fortunato (2009).

It can be clearly seen that CPM performs well. The difference in perfor-
mance of the CPM model in comparison to the RB model using the ER null
model is especially striking. Obviously then, setting γCPM = p is in general
not a very good strategy, and for general networks one should carefully
analyse at which resolution the network contains meaningful partitions, a
topic we will review briefly in 4.1.

A similar effect also shows for modularity (or the RB model using the
configuration model), such that when γRB is chosen appropriately (i.e. us-
ing γRB = γ∗RB) the method will perform better than at the ordinary resolu-
tionγRB = 1. Indeed, the results of the CPM model and the RB model using
the configuration null model usingγRB are rather comparable, although the
latter’s performance drops less quickly, and then outperforms CPM. Inter-
estingly, when we use the ordinary resolution γRB = 1, it becomes more
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difficult to detect communities in large networks using the configuration
model. This contrasts with the results when we choose the appropriate
resolution parameter γ∗CPM, γ∗RB and indeed also for the Infomap method.
Indeed the communities should become more clearly discernible for larger
networks when the community sizes remain similar. The limit of commu-
nity detection as calculated earlier is about µ∗ = q−1

q ≈ 0.92 for n = 103

and µ∗ ≈ 0.99 for n = 104. The models with the tuned resolution parame-
ters work quite well and approach this upper limit to some extent. Surpris-
ingly, both methods outperform the Infomap method, which performed
superbly in previous tests (Lancichinetti and Fortunato, 2009), when the
appropriate resolution parameter is chosen.

We have also performed extensive tests on hierarchical networks, where
the method also performs well, and is able to extract the two different lev-
els of communities effectively, as displayed in Fig. 2.2. For relatively low
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µ2 / 0.7, the first (larger) level becomes more clear for low µ1, while the
second (smaller) level becomes more clear for larger µ1. This is both the
case for a recent hierarchical version of the Infomap method (Rosvall and
Bergstrom, 2011) and the CPM method. The Infomap method seems to be
slightly better at detecting the planted communities, but the CPM method
remains highly competitive. The possibility for having various scales of
description of the network seems important, as many networks seem to
have at least some hierarchical structure.
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MODULARITY has been intensively studied the past decade, and
although there are some positive aspects to it, it also has some
problematic issues. One of the biggest advantages of modular-

ity compared to older clustering methods is that it is not necessary to spec-
ify the number of clusters beforehand. Rather, the number of communities
emerges naturally from the network at hand. However, this also seems to
bring some issues along with it. We will discuss these issues here. In the
following section we will focus specifically on modularity, Eq. (2.11). Most
of the other introduced models address in some way or the other some of
the issues discussed here, and we will analyse them after modularity. We
will then define the problem more formally, and investigate what models
there might be that are able to evade these problems.

3.1 Issues with modularity

In this section, we will focus exclusively on modularity, and see some of its
problems. Although the method has several problems, the most important
one is that of the resolution limit, which we will now discuss first.

3.1.1 Resolution limit

The most famous drawback of modularity is that of the so-called resolution
limit. The problem is that some small communities in larger graphs cannot resolution limit

be detected by modularity. This is problematic, because the communities
detected by modularity should then be split to uncover the “true” commu-
nities. This problem is usually studied by analysing a ring of cliques, and
was actually introduced through this example.

The ring of cliques is a graph that consists of r cliques (complete sub- clique

graphs) each of nc nodes, with only a single link between each clique, and
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Fig. 3.1 Ring of cliques

is displayed in Fig. 3.1. The graphs thus contains r densest possible sub-
graphs which are as sparsely connected as possible (only a single link).
Intuitively each of theses cliques should thus represent a community. In
fact, this is the most modular (connected) network possible. Yet, modular-
ity may counter intuitively merge these cliques.

In order to see this, let us first calculate the modularity Q(σsingle) if all
r cliques form a community as expected. This is most easily calculated by
taking the form provided in Eq. (2.12). The total number of links within a
community is nc(nc− 1)/2, so ec = nc(nc− 1). The degree of each node in a
clique is nc− 1, and the node connecting to other cliques has two additional
links (that is, one incoming and one outgoing, remember we count links
twice) and so has degree nc + 1. The total degree Kc for each community is
then Kc = nc(nc − 1) + 2. The total number of links m = rKc/2 is then the
sum of the degrees divided by two. Hence, we obtain

Q(σsingle) =
1

2m ∑
c
[ec − 〈ec〉conf]

=
r

2m

[
nc(nc − 1)− K2

c
2m

]
=

r
2m

[
nc(nc − 1)− Kc

r

]
=

1
2m

[rnc(nc − 1)− Kc] = 1− r
m
− 1

r
, (3.1)

where 〈ec〉conf denotes the expected number of edges under the configu-
ration null-model. Now let us calculate the modularity Q(σmerged) if the
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cliques are merged two by two. So, if we originally had r communities, we
will now have r/2 communities consisting of two adjacent cliques (assum-
ing r is even). The number of internal edges is then e′c = 2ec + 2 twice the
number of edges in a single clique plus the link between the two cliques.
The total degree K′c = 2Kc in a community is simply twice the total de-
gree of a single clique. The total number of edges m of course remains
unchanged. We hence arrive at

Q(σmerged) =
1

2m ∑
c

[
e′c − 〈e′c〉conf

]
=

1
2m

r
2

[
2nc(nc − 1) + 2− (2Kc)2

2m

]
=

1
2m

[rnc(nc − 1) + r− 2Kc] = 1− r
2m
− 2

r
. (3.2)

The difference between the two hence becomes

∆Q = Q(σsingle)−Q(σmerged) =
1

2m
(Kc − r) =

1
r
− 1

Kc

and if ∆Q < 0, or
Kc < r (3.3)

thenQ(σmerged) is the larger of the two, and hence modularity would pre-
fer the partition of merged cliques over the partition of single cliques. For
example, if we have cliques of size nc = 5 and there would be more then
Kc = nc(nc − 1) + 2 = 22 cliques, they should be merged according to
modularity. For every clique size there is such a critical number of cliques
above which they should be merged according to modularity. Hence, de-
pending on the size of the graph, even the most indisputably clear com-
munities are merged with modularity.

Alternatively, we can simply investigate the optimal number of com-
munities for such a ring of cliques. Given that we want to minimize the
number of outside links, there should be only one. Since we want to max-
imize the number of internal edges each community should contain the
same number of links m

q − 1 for in total q communities, for which the sum
of degrees equals 2 m

q . Hence, for q communities, the objective function

63



3 Scale invariant community detection

value will be

Q(σq) =
1

2m
q
[

2
(

m
q
− 1
)
− (2m/q)2

2m

]
=

1
2m

[
2(m− q)− 2

m
q

]
= 1− q

m
− 1

q
. (3.4)

We maximize with respect to q, treating the variable as continuous, and
obtain

∂Q(σq)

∂q
= − 1

m
+

1
q2

so that the optimal number of communities is q∗ =
√

m. This principle
forms the basis for saying that modularity exhibits a resolution limit, and
has a natural scale of

√
m.

This resolution limit can alternatively be interpreted as a lower bound
on the community size. If we take the limit in Eq. (3.3), and consider that
Kc ≈ n2

c and r = 2m
Kc

, then any community should be at least

nc ≥ (2m)
1
4 . (3.5)

If a community would be smaller it would be merged by modularity, be-
cause even cliques are merged at that scale. So, this establishes the smallest
community size at which communities are still “visible” to modularity.

The same idea can be generalized to communities of density pc. Let us
assume there are two subgraphs of density pc and of equal size nc, and that
they are only linked by a single link. The total contribution when the two
subgraphs are kept separate is then

Q(σseperate) =
1

2m
2
(

pn2
c −

(pcn2
c + 1)2

2m

)
+Qrest

while when merging them it is

Q(σmerged) =
1

2m

(
2pcn2

c + 2− (2pcn2
c + 2)2

2m

)
+Qrest
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so that the difference is

∆Q =
1

2m
2
(

1− 1
2m

(pcn2
c + 1)2

)
.

Hence, the communities should be kept separate as long as ∆Q < 0, so
that

nc >

(
2m
p2

c

) 1
4

, (3.6)

which equals the previous bound in Eq. (3.5) when p = 1 of course. This
shows that the resolution limit becomes more endemic if the communities
are less dense than cliques.

Field of view

Another problem that is related to the resolution limit is that modularity
is myopic to a certain extent (Delvenne, Yaliraki and Barahona, 2010). The
graph exemplifying this problem is the rings of rings, instead of the ring
of cliques, displayed in Fig. 3.2. In this case there is a central ring which
connects the different rings. Especially if these rings are directed, each ring
will look like a community to a random walker. After all, the probability of
remaining within a single ring is substantial, with a very low probability
of moving from one ring to another ring. Notice that this argument in-
vokes a different conception of a community, namely that it is a subgraph
which “traps” a random walker for a substantial amount of time, similar
to Infomap (Rosvall and Bergstrom, 2008) and the derivation by Delvenne,
Yaliraki and Barahona (2010).

Assume we have r rings of nc nodes, where all the rings are connected
in one big ring. Then each node has degree ki = 2 except for the outside
node, which has ki = 4. We will detail the modularity contribution for a
single ring. When keeping the ring as a whole, we arrive at

Q(σsingle) =
1

2m

(
2nc −

(2nc + 2)2

2m

)
+Qrest

while when splitting the ring we have

Q(σseparate) =
1

2m

(
4
(nc

2
− 1
)
− (2 nc

2 )
2

2m
− (2 nc

2 + 2)2

2m

)
+Qrest.
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Fig. 3.2 Ring of rings

The difference between the two then amounts to

∆Q =
1

2m

(
4− n2

c + 2nc

m

)
Since we have m = r(nc + 1) links in total, we obtain that as long as

4r < nc
nc + 2
nc + 1

this ring should be split. This implies that graphs that have long cycles or
paths may be split into several parts, whereas this might not be appropri-
ate.

3.1.2 Non-locality

Whenever a node is added, this might have effects on the other side of the
network, i.e. it has a certain ripple effect (Brandes, Delling, Gaertler et al.,
2008). More in particular, let us suppose there is a node with degree ki = 1,
so that it has only one neighbour (and no self-loop). Suppose the potential
community to which it is linked has total degree Kc and ec edges. Then the
difference in modularity for putting the node in its neighbours community
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(a) Original network

(b) Node added

Fig. 3.3 Locality effect

is

∆Q =
1

2m

(
2− Kc

m

)
> 0,

so that the node should always be joined to its neighbour. A fortiori, a
similar statement holds for node with any degree. Suppose some node i
is the only node in a community, with degree ki, and eic edges from i to
community c. Then putting i in community c yields a benefit of

∆Q =
1

2m

(
2eic −

kiKc

m

)
.

Since ∑c

[
2eic − kiKc

m

]
= 0, the difference ∆Q cannot be negative for all c.

So, there is at least one community to where we can move the node. Hence,
no community ever consists of a single node.
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This might have consequences for the rest of the partition, especially
in cases where the partition is only slightly preferable to another partition.
For example, suppose there are two communities which are linked strongly
enough to remain together. Then if we add a single node and link it to
a single node in one of the communities, they might suddenly be split.
Moreover, if the other community was linked to another community they
might suddenly be merged. Hence, the introduction of a single additional
node might have consequences reaching beyond the local neighbourhood
of the additional node, illustrated in Fig. 3.3.

3.1.3 Spuriously high modularity

Some networks are generally believed to not contain any communities,
such as random graphs, cycles and trees. Nonetheless modularity will find
clusters, and modularity can be relatively high. Since modularity was in
first instance a measure of the quality of the partition, it was believed that
high values indicate a strongly modular structure in the network (hence
the name). Furthermore, it is normalized so that for the strongest possible
modular structure (the ring of cliques) modularity approaches 1. Hence, it
might be expected that whenever modularity is high (∼ 1) it is a sign that
the network indeed has a significant community structure. For example,
Newman and Girvan (2004) suggests that values of modularity are usually
somewhere ranging from 0.3 to 0.7 for networks that have some commu-
nity structure.

However, modularity can reach arbitrarily high values, especially on
sparse graphs (Bagrow, 2012; Montgolfier, Soto and Viennot, 2011). It can
be regarded as a method that focuses on bottlenecks (few outgoing) links,
while the actual density is less important (Bagrow, 2012), since this is nor-
malized by the random null model. Hence, the value of modularity itself
does not say that much, and should be interpreted with caution. We will
see an illustration of how this has been wrongly applied in Chapter 6.

Let us start with the sparsest possible connected graph, a tree. A treetree

is minimally connected, so that if you remove any link, it will be discon-
nected. Furthermore, it contains no cycle, and if you add any link (without
adding a node) it will contain a cycle. This implies there is a single unique
path connecting any two vertices in a tree. Finally, a tree of n nodes always
has m = n− 1 edges, which can be easily proven by induction.

Let us assume we have a tree of n nodes. We want to partition the
tree along a reasonable line so as to obtain a lower bound on the modular-
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ity. Let us consider the node v which splits the network in the most equal
connected components if deleted (there might be more, but let us simply
choose one). Let us call that the root node of the tree. In other words, the root

node v which minimizes ∑c n2
c where nc is the size of the connected com-

ponent after deletion of that node v. Let us assume this node has degree
k so that there are k components. Now consider the partition that consists
of these connected components and the single node v. We know that each
connected subgraph of a tree is also a tree, so that each subgraph contains
ec = 2(nc − 1) edges. Counting the total degree, this is Kc = 2mc + 1
because it is only connected to the root node. The total modularity is then

Q =
1

2m ∑
c

[
ec −

K2
c

2m

]
.

Since we only cut k links, we know that ∑c ec = 2(n− 1− k). Furthermore,
let us assume that nc ≈ n

k (which is a good approximation by the fact that
v minimizes ∑c n2

c ). We then obtain that Kc = 2(nc − 1) + 1 ≈ 2 n
k for the k

components, while for the root node we obtain Kc = k of course. Working
out we obtain, after approximating m ≈ n,

Q =
1

2m

[
2(n− 1− k)− 1

2m

(
4k

n2

k2 − k2
)]

= 1− k
n
− 1

k
+

k2

4n2 (3.7)

so that for n→ ∞, we obtain thatQ → 1− 1
k , assuming k remains constant.

In fact, this modularity can be increased still by splitting the communities
further, i.e. by recursively following the same procedure as long as it im-
proves modularity (Montgolfier, Soto and Viennot, 2011). But this changes
little for the asymptotic analysis. Amazingly, this is also the modularity
for the most modular network, namely the ring of cliques as mentioned in
Eq. (3.1). So, according to modularity the ring of cliques and a tree are both
about equally modular (for large n). Hence, even without a clear commu-
nity structure the modularity is very high.

These calculations were made for a specific class of graphs, namely
trees. Preferably, one would like to say that the community partition de-
tected is significant. So, it should have a higher modularity than expected
for a random graph. This is however not trivial to calculate. Using for-
malisms from statistical mechanics one is able to find approximate answers
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(Reichardt and Bornholdt, 2007, 2006b), but we will not go into details
here. Given a degree distribution with expected degree 〈k〉 and the av-
erage square-root degree 〈

√
k〉, the expected modularity is

Q = 0.97
〈
√

k〉
〈k〉 .

This approximation is only good for relatively dense graphs. Whenever
〈k〉 becomes small, a random graph will contain relatively few cycles, and
becomes more and more tree-like, so that the previous results apply. For
ER graphs, cycles of all lengths appear simultaneously around 〈k〉 = 1,
and for 〈k〉 < 1 it will be almost tree like.

Summarizing, upon finding some community structure, if somebody
wants to comment on how “modular” the network is, the value of mod-
ularity should be compared to what can be expected in random graphs.
Especially for sparse graphs modularity can become quite high, thereby
making it difficult to estimate how significant a certain community struc-
ture is. For more dense graphs the modularity becomes lower, since in
general it will contain more links between subgraphs.

3.2 Resolution limit in other models

Most of the other models somehow try to circumvent the problem of the
resolution-limit. Although not all of them were introduced specifically to
deal with this issue, how they are affected by the resolution limit has been
extensively analysed. Although the problem of the resolution-limit is in-
tuitively clear—it “hides” small communities—it is not entirely clear what
the opposite means. We will first discuss how the other models are affected
by resolution limit like issues. We will show that most will still show sim-
ilar issues. In the next section we will make more explicit what is the core
of the resolution limit.

3.2.1 RB model

Although originally not introduced in order to circumvent the problem of
the resolution limit (Reichardt and Bornholdt, 2006a), the resolution pa-
rameter γRB in the Reichardt and Bornholdt model, Eq. (2.7), allows to de-
tect communities at different scales. We repeat the same analysis as for

modularity, with pi j =
kik j
2m but with the resolution parameter included.
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The objective function value for single cliques is then

HRB(σsingle) = −(rnc(nc − 1)−γRBKc)

with Kc = nc(nc − 1) + 2 as before. When merging cliques we obtain

HRB(σmerge) = −(rnc(nc − 1) + r−γRB2Kc)

and so if the difference ∆H = −γRBKc + r > 0, or

γRBKc < r (3.8)

it is better to merge the cliques than to separate them. The introduction of
the resolution parameterγRB then changes the resolution limit as calculated
for modularity. In order to keep the cliques separate the resolution param-
eter should be increased, while for lower resolution parameters the cliques
are merged more readily. Optimizing the number of communities similar
as before leads to an optimal number of communities of q∗ =

√
γRBm.

The corresponding community size limit is then

nc ≥
(

2m
γRB

) 1
4

, (3.9)

which can be seen from Eq. (3.8) by using Kc ≈ n2
c and r = 2m

Kc
. Similarly

for merging communities of density pc we arrive at

nc ≥
(

2m
γRB p2

c

) 1
4

. (3.10)

Again, the introduction of the resolution parameter γRB allows to shift this
lower bound on the community size, so that for a higher resolution param-
eter this decreases the lowest possible community size, while increasing
this for lower resolution parameters.

So, introducing a resolution parameter does not circumvent completely
the resolution limit, but it does allow to detect smaller or larger communi-
ties, depending on what one needs.

It is also possible to choose other null models, and a common null
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model is the ER null model using

pi j = p =
m
(n

2)

=
r(nc(nc − 1)/2 + 1)

rnc(rnc − 1)/2
.

In this case the cost for having cliques as single communities and merging
cliques is

HRB(σsingle) = −(rnc(nc − 1)−γRB prn2
c ),

HRB(σmerge) = −(rnc(nc − 1) + r−γRB p
r
2
(2nc)

2).

The difference is then ∆H = −γRBrpn2
c + r > 0, equivalent to γRB p < 1/n2

c
so that if

γRB (nc(nc − 1) + 2) = γRBKc < r− 1
nc

,

the cliques should be merged. The resolution limit for the ER null model
is thus the same up to a correction term of 1

n2
c
. The corresponding limit on

community size is

nc ≥
(

1
γRB p

) 1
2

. (3.11)

More general, one can wonder if there is any null model pi j such that it
evades the resolution limit completely. Due to the constraint that ∑i j pi j =

2m this is impossible however since pi j scales with m. So, there will always
exist a value of the resolution parameter γRB such that for some combina-
tion of q and nc the cliques will be merged. So, even though the resolution
parameter helps to look at different scales, it cannot evade the resolution
limit, regardless of the null model (Kumpula, Saramäki, Kaski et al., 2007).

Upper resolution limit

However, something interesting happens with the introduction of the res-
olution parameter γRB. Whereas the traditional resolution limit signifies a
lower bound on the community size—communities smaller than that limit
will not be detected—there are also some non-trivial upper bounds on the
community size—communities larger than this limit will not be detected.
This problem does not present itself in modularity (where the upper bound
is trivial), and is only present in the RB model when γRB > 1. This is due to
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the fact that the null model then outweighs the empirical networks. This
was first observed by Krings and Blondel (2011) although slightly different
formulated.

The problem in the traditional resolution limit is that of merging com-
munities, but we might analyse similar limits when splitting communities.
Again starting from the most modular community, a clique, we analyse
when it will be split. When splitting a clique, it is best to split it into sin-
gle nodes (it is better or equal to the modularity when splitting a clique
in multiple parts). Let us analyse a complete clique which is completely
separate from the rest of the network. Keeping the clique intact as a single
community yields a cost of

HRB(σsingle) = −
(

nc(nc − 1)−γRB
n2

c (n2 − 1)2

2m

)
+Hrest

while splitting it yields

HRB(σsplit) = γRB
nc(nc − 1)2

2m
+Hrest

so that we obtain that the difference is

∆HRB = HRB(σsingle)−HRB(σsplit) = −nc(nc − 1) +
γRB

2m
n3

c (nc − 1).

Since we want the clique not to be split, we ask that ∆H < 0, so that it is
preferable to keep a single community. In that case, we obtain an upper
bound on the community size of

nc ≤
√

2m
γRB

. (3.12)

Combining the earlier result of the resolution limit (Kumpula, Saramäki,
Kaski et al., 2007) and this upper bound (Krings and Blondel, 2011), we
obtain the fundamental community size inequalities

(
2m
γRB

) 1
4
≤ nc ≤

(
2m
γRB

) 1
2

. (3.13)

Notice that if γRB ≤ 1 that then the upper bound indeed becomes triv-
ial, since by definition the number of edges m is larger than the number of
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edges in the clique of size n2
c/2, and so that by definition nc ≤

√
2m. When-

ever γRB ≥ 2m the lower bound becomes trivial, since nc ≥ 1 by definition.
Of course, when γRB ≥ 2m then also nc ≤ 1 by the upper bound, so that
necessarily nc = 1. In fact, when γRB ≥ 2m the inequalities conflict, and
the statement is no longer valid. So, only for 1 < γRB < 2m both bounds
are non-trivial and valid, and reduce the size of “visible” communities to
the ranges specified.

Instead of separating cliques, let us investigate when it is beneficial to
split communities of a lower density p. Suppose we have a subgraph of
density p which is difficult to split. That is, let us suppose that any partition
in two creates subgraphs that have (about) the same density p, and also a
density of about p between the two subgraphs. Let us first consider what
would be the contribution of this subgraph to modularity. The number of
internal edges is then pn2

c , which is of course equal to the total degree. We
then arrive at a cost of

HRB(σsingle) = −
(

pn2
c −

(pn2
c )

2

2m

)
+Hrest.

When splitting the graph in two, the number of internal edges is then

p
( nc

2
)2, while the total degree is pn2

c
2 . Hence, the contribution for splitting

is

HRB(σsplit) = −2

(
p
(nc

2

)2
−
( pnc

2
)2

2m

)
+Hrest.

Examining the difference we arrive at

∆HRB = − pn2
c

2

(
1−γRB

pn2
c

2m

)
,

and so we obtain the upper bound on the community size of

nc <

√
2m
γRB p

. (3.14)

Notice that this coincides with the original upper bound when p = 1. Com-
bining the lower and upper bound, we obtain

(
2m
γRB

) 1
4
≤ √pnc ≤

(
2m
γRB

) 1
2

. (3.15)
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Notice again, that these bounds are only non-trivial and valid for 1 ≤
γRB ≤ 2m.

Surprisingly, when considering the ER null model no such upper bound
exists. If we work out the case of splitting a complete clique, we arrive at
the inequality that

nc(nc − 1)(1−γRB p) > 0. (3.16)

This is always the case when γRB < 1/p and the clique will never be split,
while if γRB > 1/p the clique will always be split. Hence, there is no par-
ticular community size nc for which it will be split or not.

This points to an interesting difference between the lower bound and
upper bound resolution limit. Whereas the lower bound holds regardless
of any null model, the upper bound holds only for certain null models.

3.2.2 AFG model

The AFG model was introduced specifically to overcome to some extent the
resolution limit inherent in modularity (Arenas, Fernandez and Gomez,
2007). Similar to the RB model, varying the parameter γAFG allows one
to obtain different views of the community structure, although the two
methods are not equivalent (except trivially when γAFG = 0 and γRB = 1,
in which case both reduce to modularity). The question is to what extent
this method is able to overcome the resolution limit.

Let us start again with the traditional ring of cliques. The AFG model
can alternatively be written as

HAFG = −∑
c

[
ec +γAFGnc −

(Kc +γAFGnc)2

2m +γAFGn

]
.

For the ring of cliques we have ec = nc(nc − 1) while Kc = ec + 2. The cost
for having each clique as a community then is

HAFG = −r
(

ec +γAFGnc −
(Kc +γAFGnc)2

2m +γAFGn

)
while for merging the cliques we have

HAFG = − r
2

(
2(ec + 1 +γAFGnc)−

4(Kc +γAFGnc)2

2m +γAFGn

)
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and the difference comes down to

∆H = r
(

1− (Kc +γAFGnc)2

2m +γAFGn

)
.

Since 2m = rKC and n = rnc we obtain that the cliques will be merged
(∆H > 0) when

Kc +γAFGnc < r (3.17)

which is the original limit in Eq. (3.3) up to a correction of γAFGnc of the
usual resolution limit of γAFGnc. While this correction was multiplicative
using γRB, it is additive using γAFG. The lower bound on the community
size is implicitly given by

(γAFG + nc)n3
c > 2m (3.18)

which for nc � γAFG becomes equivalent to the original inequality of nc ≥
(2m)

1
4 . On the other hand if nc ≈ γAFG this amounts to nc ≥ m

1
4 . So we

generally expect the smallest community size to scale as m
1
4 .

Upper resolution limit

Let us now analyse whether the AFG model also exhibits an upper bound
on the community size. We know that for γAFG = 0 no such bound exists,
but for the RB model such a bound exists forγRB > 1, so perhaps forγAFG >

0 this is also the case.

Let us again start from a clique completely separate from the rest of the
network. This then amounts to

HAFG(σsingle) = nc(nc − 1) + γAFGnc −
nc(nc − 1) + γAFGnc)2

2m +γAFGn
+Hrest

while splitting into single nodes yields

HAFG(σsplit) = nc

(
γAFG −

(nc − 1 +γAFG)2

2m +γAFGn

)
+Hrest.

So the difference becomes

∆HAFG = nc(nc − 1)
(

1− (nc − 1 +γAFG)2

2m +γAFGn

)
,
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which gives the upper bound on the community size of

nc ≤
√

2m +γAFGn−γAFG + 1. (3.19)

This bound is only non-trivial for 0 < γAFG < −n+
√

8m+n2

2 , since by defini-
tion 1 < nc <

√
2m. Hence, this restricts the community sizes also to some

specific range depending on γAFG.

3.2.3 CPM and RN

The method of CPM (Traag, Van Dooren and Nesterov, 2011b) and RN (Ron-
hovde and Nussinov, 2010) differ from the other two models in the sense
that they do not depend on any null model. For non-weighted graphs it
can be easily seen that their definitions are equal, and so we will only state
the results for CPM here, which is somewhat more elegant in its presen-
tation. The corresponding inequalities for the RN model can be derived
using γCPM = γRN

1+γRN
. Finally, the LP method corresponds to γCPM = 0.

We again start out by looking at when cliques are merged in the ring of
cliques network. We again have r cliques of size nc connected to each other
with only a single link. The cost for keeping them separate is then

HCPM(σsingle) = −r(nc(nc − 1)−γCPMn2
c )

while when merging them it is

HCPM(σmerge) = −
r
2
(2nc(nc − 1) + 2−γCPM4n2

c )

= −r(nc(nc − 1) + 1−γCPM2n2
c ).

The difference is
∆HCPM = r(1−γCPMn2

c ),

so that the cliques will be merged when γCPM < 1/n2
c . As one can see,

this no longer depends on the total size of the network in terms of m or
n, but only on the “local” variable nc. However, the lower bound on the
community size still exists, which is

nc >

√
1

γCPM
. (3.20)

The question remains what exactly the resolution limit entails and whether
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the independence of this inequality on m and n suffices to say a method
does not suffer from the resolution limit. We will come back to this ques-
tion in the next section.

We can also look at when two subgraphs of size nc and density p with
only a single link in between them will be merged. Doing so yields a cost
of

HCPM(σsingle) = 2(pn2
c −γCPMn2

c ) +Hrest

for keeping them separate. Merging them gives a cost of

HCPM(σmerged) = (2pn2
c + 1−γCPM(2nc)

2) +Hrest

so that the difference yields a lower bound on the community size of

nc >

√
1

γCPM
. (3.21)

Surprisingly this bound remains unchanged for different densities. This
implies that the community sizes only depend on the resolution parameter
γCPM and not on the graph analysed.

More general, suppose there are two communities of sizes n1 and n2,
with a density of 2pn1n2 links in between, so that the density is p, with each
e1 and e2 links within the communities, and let us see when they should be
merged. Keeping them separate yields a cost of

HCPM(σsingle) = e1 + e2 −γCPM(n2
1 + n2

2) +Hrest

while, merging them gives a cost of

HCPM(σmerged) = (e1 + e2 + pn1n2 −γCPM(n1 + n2)
2) +Hrest

so that the two should be merged whenever

γCPM < p. (3.22)

This simply states that two communities should always be merged when-
ever the density of the links between them exceeds the resolution parame-
ter. Vice-versa, the communities should be separated when the density is
below this threshold.

This provides a quite clear interpretation and definition of a commu-
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nity. If we consider only changes to the partition that consist of moving
(a set of) nodes from one community to another, merging communities
and splitting communities—in other words, a local minimum of most al-
gorithms considered here—a community should then have

1. a uniform internal density of at least γCPM; and

2. a uniform external density of at most γCPM to each other community.

With a uniform internal density, we mean that for all partitions of the com-
munity, there will be at least a density of γCPM link between them. In other
words, we should not be able to split a community in two, so that for all
proper subsets S ⊂ C where C is the community set of some community,
we should have eS,C′

|S|(|C| − |S|) > γCPM (3.23)

where eS,C′ is the number of edges between S and C′ = S \ C its comple-
ment in C. With a uniform external density, we mean that we cannot merge
a subset of one community to another community. Suppose S ⊂ C and we
consider another community D, then it should hold that

eS,C′ −γ|S|(|C| − |S|) > eS,D −γ|S|(|D|+ |S|). (3.24)

If not, we could put set S in community D.
This already provides some intuition as to the upper resolution limit.

Since each community should have an internal density of at least γCPM, a
clique will not be quickly split. Performing the same calculations as before
for splitting a clique into separate nodes yields the inequality

nc(nc − 1)(1−γCPM) < 0 (3.25)

which is always satisfied for γCPM < 1 and never satisfied for γCPM > 1.
Indeed, this corresponds nicely with the definition of a community just
provided. This implies there is no upper resolution limit.

However, a particular problem for CPM is that communities of dif-
ferent densities are difficult to detect simultaneously. Suppose there is a
rather sparse community with uniform density p, and two cliques sepa-
rated by a density of p as well. Then whenever γCPM > p it should merge
the two cliques, while if γCPM < p it should split the sparse community.
Hence, it is impossible to find a single γCPM such that all communities are
detected correctly. On the other hand, when a community has a density p
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and the cliques are separated with a density of p, it is also a valid question
whether they actually constitute good communities. One possible solution
is to have somehow different resolution parameters γi j per link (i, j).

Summarizing, the bounds for CPM (and by extension RN) do not de-
pend on the actual graph, and there is no upper bound on the community
size. This indeed suggests that these methods are less troubled by the res-
olution limit. In that sense they might be preferable to the other methods,
although this might change depending on the needs.

3.3 Scale invariance

In the previous section we have detailed quite specifically what the differ-
ent bounds of the different methods are, detailed in Table 3.1. However, it
remains somewhat unclear to what extent these methods suffer from the
resolution limit. More specifically, when does a method not suffer from the
resolution limit? So the concept of resolution limit free requires a more pre-
cise definition. We will develop such a definition in this section, and see
it has a natural connection with the scale of the graph. Methods that not
suffer from the resolution limit are said to be scale invariant. Moreover, we
have seen that some models suffer from a lesser extent to the resolution
limit. A natural question is what models do not suffer from the resolu-
tion limit? Phrased somewhat differently, what weights ai j and bi j can we
choose in the general framework in order to be scale invariant?

3.3.1 Relaxing the null models

One of the reasons that modularity and the RB and AFG models suffer
from a resolution limit is their dependence on a null model. In the canoni-
cal derivation of our framework, it was demanded that ∑i j pi j = 2m. This
makes sense, since from the point of view of a random null model we
would like to have as many edges in the random graph as in the origi-
nal graph. However, from the view point of simply specifying some of the
weights ai j and bi j we are not constrained a-priori.

So, let us relax that constraint for a moment. Consider for example
that we take away the dependence on the number of links in the config-
uration null model, so that we take pi j = kik j. Of course, this has little
sense in terms of a null model, but it simply corresponds to a weight of
bi j = γRBkik j. In other words, the cost of having a missing link in a com-
munity is proportional to how many links both nodes have. This is no
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less arbitrary then simply choosing a bi j = |N(i) ∪ N( j)| the number of
neighbours in common for example.

Let us briefly see how such a method using pi j = kik j would perform
on the ring of cliques. Keeping the cliques separate yields

HRB(σsingle) = −r(ec −γRBK2
c )

while merging them yields

HRB(σmerge) = −
r
2
(2ec + 2−γRB(2Kc)

2) = −r(ec + 1−γRB2K2
c )

with the difference
∆HRB = 1−γRBK2

c > 0

so that the cliques are merged whenever

γRB < K−2
c . (3.26)

This also does not depend on the graph under consideration, so this model
could also be said not to suffer from the resolution limit. But is this really
what we mean by not suffering from the resolution limit?

Not all problems have disappeared. Suppose we take the subgraph
consisting of only two of these cliques. We analyse when the method
would merge the two cliques in this subgraph. The only difference is
that in this subgraph K′c = Kc − 1 because there is only a single link con-
necting the two subgraphs. The two cliques will then be merged when
γRB < K′2c = (Kc − 1)2. Even though neither inequality depends on any
global variables, a problem remains. Combining the above two inequali-
ties, we obtain that whenever

K−2
c < γRB < (Kc − 1)−2, (3.27)

the method will separate the cliques in the larger graph, yet merge them
in the subgraph. So even though the inequality for merging cliques in
Eq. (3.26) does not depend on any global variable, some problems of scale
remain.

Considering again modularity (or the RB model) this is similar to what
happens in the resolution limit. Since the merging of cliques will depend
on the size of the graph as a whole, indeed cliques will be merged in some
large graph, while in the subgraph they will not be merged. Taking the
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same subgraph of two cliques, and taking K′c = Kc as before, the cliques
will be merged in the large graph and split in the subgraph when

r
Kc − 1

< γRB <
r

Kc
. (3.28)

3.3.2 Defining scale invariance

The above discussion motivates the following idea for a scale invariant scale invariant

method. The general idea is that when looking at any induced subgraph of
the original graph, the resulting partitioning should not change. In order
to introduce this definition, letH be any objective function (which we want
to minimize), we then call a partition C for a graph H-optimal whenever
H(C) ≤ H(C ′) for any other partition C ′. We can then define scale invariance
as follows.

Definition 3.1. Let C = {C1, C2, . . . , Cq} be an H-optimal partition of a graph
G. Then the objective functionH is called scale invariant if for each subgraph H
induced by D ⊂ C, the partition D is alsoH-optimal.

Intuitively this means the following. If we take any subgraph induced
by the optimal partition, that same partition should be optimal on that sub-
graph. Since the subgraph is induced by the optimal partition, it can only
consist of complete communities; we can’t cut across any communities.
This idea is illustrated in Fig. 3.4.

Notice that this definition only “works” in one direction. That is, if
a method is scale invariant, we know that for all subgraphs induced by
the optimal partition, the partition remains optimal on those subgraphs.
However, the inverse is obviously not true. Suppose we are given some
graphs G1, . . . , Gq and some optimal partitions on them C1, . . . , Cq. Then
an arbitrary graph G which has all graphs Gi ⊂ G as a subgraph, does not
necessarily have the same optimal partition composed of C1, . . . , Cq.

But for the ring of cliques this one direction is all we need. Observe
that indeed when a method merges cliques in the ring of cliques network
depending on the size of the network it is not scale invariant. To see this, it
is slightly easier to consider the chain of cliques—the ring of cliques with
one link between two cliques cut out. For some number of cliques r above
some threshold r > r∗ it will merge cliques, while for r′ < r∗ it will keep
them separate. The graph with r′ cliques is a subgraph of Gr, or G′r ⊂ Gr
which is induced by its partition of merged cliques C. Indeed the partition
D inducing graph G′r is no longer optimal, since they are no longer merged
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Induced 
subgraph H

Same optimal partition

Fig. 3.4 Scale invariance illustration84
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in graph G′r. Finally, notice that if a method is scale invariant, it will never
start merging cliques depending on the number of cliques r. So, this defini-
tion indeed accurately captures the core of the resolution limit altogether.
This idea is demonstrated in Fig. 3.5. In short, the same partition should
then remain optimal for that induced subgraph.

Resolution-limit

Resolution-limit-free

α1

α2
α3

β1

β2

β3

β4

Fig. 3.5 Scale invariance in ring of cliques
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If the objective function has another property, we can state something
interesting, namely that to some extent we can go to the other “direction”.
That is, we may exchange parts of optimal partitions. So if we have an
optimal partition of the complete graph G, and we find another optimal
partition on some (community) induced subgraph H, we may exchange it.

Definition 3.2. An objective functionH for a partition C = {C1, . . . , Cq} is called
additive whenever H(C) = ∑iH(Ci), where H(Ci) is the objective function de-
fined on the subgraph H induced by Ci.

Notice that CPM and the RN model are both additive objective func-
tions, but that modularity, the RB and the AFG model are not. Although
the first is easy to see, the latter is perhaps less clear. The essential notion
here is that H(Ci) is defined on the subgraph H induced by Ci, so that it
may not depend on anything outside the subgraph H. The latter models
already depend on some global parameters, but even the local dependence
on the degree ki renders these method not additive.

Now the interesting result is that if we have an H-optimal partition C
for an additive scale invariant objective functionH, we can replace subpar-
titions of C by other optimal subpartitions, as already stated informally.

Theorem 3.3. Given an additive scale invariant objective function H, let C be an
H-optimal partition of a graph G and let H ⊂ G be the induced subgraph by
D ⊂ C. If D′ is an alternative optimal partition of H then C ′ = C \ D ∪ D′ is
alsoH-optimal.

Proof. Define C ′ and D′ as in the theorem. By additivity, H(C ′) = H(C \
D) +H(D′), and by optimality H(D′) ≤ H(D). Since also H(C) = H(C \
D) +H(D) we obtainH(C ′) ≤ H(C), so C ′ is also optimal.

The idea behind this proof is simply the following. Suppose we have
an optimal partition C. Then suppose we take a community induced sub-
graph and have a different optimal partition on that subgraph. Then be-
cause of the property of an additive objective function, we can use this
optimal partition on the subgraph to replace that part of the partition on
the original graph. In terms of the example in Fig. 3.4, this means the fol-
lowing. Suppose that we take the subgraph H as indicated in the figure.
If an alternative partition would also be optimal on that subgraph, then
replacing that part of the partition in the original graph with the alterna-
tive partition would also be an optimal partition on the original graph. For
example, if the four communities in the bottom right could be joined to
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create an alternative optimal partition in the subgraph H, it would also be
optimal to join them in the original graph.

Although this might seem to contradict the NP-hardness of community
detection methods, this is not the case. It states that when there are two
optimal partitions, any combination of those partitions are optimal, so in a
certain sense, they are spanning a space of optimal partitions. It does not
say whether such a partition can be easily found. Also, there might be two
optimal partitions that cannot be obtained by recombining them, because
all communities partly overlap with each other. For example, suppose that
one optimal C partition is to divide the set of nodes in C1 and C2, while
another optimal partition is C ′ = {C′1, C′2}, where Ci ∩ C′j 6= ∅. Then both
partitions give rise to different induced subgraphs, hence the one cannot
be used to replace parts of the other.

We can prove that CPM is scale invariant in this sense, just like the RN
model and the LP model. The RB model is not scale invariant according
to our definition, regardless of the null model (Kumpula, Saramäki, Kaski
et al., 2007), and hence modularity is not scale invariant. Furthermore, as
we have seen, also when using pi j = kik j the model is not scale invariant.
Finally, the AFG model is not scale invariant either.

For scale invariant methods, the results should be unchanged on sub-
graphs. Hence, we could try to run an algorithm recursively on subgraphs.
We could for example consider the following improvement for CPM. First
we cut the network at each recursive call, until the density of the sub-
graph exceeds γCPM. Then, we recombine the subgraphs, and loop over
nodes/communities to find improvements until we can no longer increase
greedily, and return to the previous recursive function call. These calls
should be easily parallelized, making community detection in even larger
graphs or in an on-line setting possible.

Since the CPM model is also related to the RB model using the ER null
model, it is tempting to conclude it is also scale invariant. Indeed, this
might be said to be the case, if we choose p independently of the graph,
i.e. not define it as p = m/n(n− 1), and simply choose it as some value
p ∈ R. However, we then obviously retrieve the CPM model. This shows
that scale invariant methods are strongly constrained, and there is only a
fine line between resolution-limit and scale invariant methods.

These results follow from the more general theorem we will now prove.
For this, we first introduce the notion of local weights. Again, building
on the idea of subgraphs, we define local weights as weights that do not
change when looking to subgraphs.
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Definition 3.4. Let G be a graph, and let ai j and bi j as in Eq. (2.5) be the associated
weights. Let H be a subgraph of G with associated weights a′i j and b′i j. Then the
weights are called local if ai j = λa′i j and bi j = λb′i j, where λ = λ(H) > 0 can
depend on the subgraph H.

Notice that this multiplicative scaling with λ leaves unchanged the op-
timum of the objective function H. Clearly then, the RN and CPM model
have local weights, while the RB and AFG model do not. This definition
says that local weights should be independent of the graph G in a certain
sense. In fact, it is quite a strong requirement, as it should even hold for a
single link (i j) in the subgraph where only i and j are included. That means
it can not depend on any other link but the very link itself. Since for miss-
ing links, there is (usually) no associated weight or anything, it can only
be constant. There are some exceptions, such as multi-partite networks, or
networks embedded in geographical space (Expert, Evans, Blondel et al.,
2011; Lambiotte, Blondel, De Kerchove et al., 2008), where some meaning-
ful non-constant local weights can be provided. Hence, the RN model and
the CPM model are one of the few sensible options available for having lo-
cal variables. We can now prove the more general statement that methods
using local weights are scale invariant.

Theorem 3.5. The objective function H as defined in Eq. (2.5) is scale invariant
if it has local weights.

Proof. Let C be the optimal partition for G with community assignments ci,
D ⊂ C a subset of this partition, and H the subgraph induced by D with
h nodes. Furthermore, we denote by di the community indices of D, such
that di = ci for 1 ≤ i ≤ h and by A′ the adjacency matrix of H, so that
Ai j = A′i j for 1 ≤ i ≤ h. Assume D is not optimal for H, and that D∗ is
optimal, so that H(D) > H(D∗). Then define c∗ by setting c∗i = d∗i for
1 ≤ i ≤ h and c∗i = ci for h < i ≤ n. Then because the result is unchanged
for the nodes h < i ≤ n, we have that

∆H = H(C)−H(C∗) = 1
λ
(H(D)−H(D∗)) > 0

where the last step follows from the locality of the weights ai j and bi j.
This inequality contradicts the optimality of C. Hence, for all induced sub-
graphs H, the partition D is optimal, and the objective function H is scale
invariant.

The converse is unfortunately not true. Consider a graph G with some
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weights ai j and bi j. Then pick a subgraph H induced by some subpartition
D, and define the weights a′i j = ai j and b′i j = bi j except for one particular
edge (kl), for which we set a′kl = akl +ε. Then for some ε > 0, the origi-
nal subpartition will remain optimal in H, while the weights are not local.
Since the small change of the weight is only made when considering the
graph H, all other subpartitions will always remain optimal. Of course,
such a definition of the weight is rather odd, so in practice we will never
use it.

Even though the converse is not true, we can say a bit more. The
weights can be a bit different indeed, but there is not that much room
for these differences. We demonstrate this on the ring of cliques. The
weights can depend only on the graph, so if G and G′ are two isomor-
phic graphs (i.e. they are the same up to a relabelling of the nodes), then isomorphic

ai j(G) = ai′ j′(G′), where i and i′ are two isomorphic nodes. Hence, only a
number of weights can be different from each other in the ring network, as
illustrated in Fig. 3.5. All nodes within a clique are isomorphic, except the
node that connects to other cliques. So, all the edges among those nc − 1
nodes are similar, and will have the same weight α1. All edges from these
nc − 1 nodes to the “outside” node will have the same weight α2. Finally,
the edge connecting two cliques is denoted by α3. The missing self-loop
for the special outside node is denoted by β2 while the missing self-loop
for the other nodes in the cliques is denoted by β1. Finally, there is (1) a
missing link between the outside node and a normal node denoted by β3;
and (2) a missing link between two normal nodes, denoted by β4. These
weights are illustrated in Fig. 3.5.

Let us now analyse when a method is not scale invariant. Then, the
cliques must be merged in some (large) graph, while for the subgraph
consisting of these two merged cliques, they should be separated by the
method. Or conversely, they should be separated in some (large) graph,
but merged in the subgraph. We can write theH(σseparate) for all r cliques
being separate as

H(σseparate) = −r(α1(nc − 1)(nc − 2) + 2α2(nc − 1)

− (nc − 1)β1 −β2)
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andH(σmerged) for merging all two consecutive cliques as

H(σmerged) = −
r
2

2(α1(nc − 1)(nc − 2) + 2α2(nc − 1)

− (nc − 1)β1 −β2 +α3 −β3(nc − 1)−β4(nc − 1)2)

Furthermore, for the induced subgraph H consisting of two consecutive
cliques, we can writeH′s for separating the two cliques andH′m for merging
them, similarly as before, whereα′ and β′ are the weights for the subgraph
H. Then the method is not scale invariant if it would merge the two cliques
at a higher level (i.e. whenHm < Hs) yet would not merge them at smaller
scale (i.e. when H′s < H′m), or vice versa. Working out this condition for
Hm < Hs (and similarly forHm > Hs) gives us

α3 > (nc − 1)(β4(nc − 1) +β3),

while forH′s < H′m (and similarly forH′s > H′m) we obtain

α′3 < (nc − 1)(β′4(nc − 1) +β′3).

Combining these two inequalities for both cases we obtain

α′3(β4(nc − 1) +β3) < α3(β
′
4(nc − 1) +β′3), (3.29)

α′3(β4(nc − 1) +β3) > α3(β
′
4(nc − 1) +β′3). (3.30)

where either Eq. (3.29) or (3.30) should hold. Hence, only if the left hand
side equals the right hand side, it does not constitute a counter example.
Working out this equality, there are two possibilities. Either the weights
should be local, or the following equality should hold

nc − 1 =
α3β

′
3 −α′3β3

α′3β4 −α3β
′
4

. (3.31)

Obviously, this again constitutes some very particular case of non-local
weights. We can repeat this same procedure for other subpartitions, and
for other graphs, thereby forcing the weights to be of a very particular kind.
This thus leaves little room for having any sensible non-local definition
such that the method is scale invariant.

This means scale invariant community detection has only a quite lim-
ited scope. In fact, CPM seems to be the simplest non-trivial sensible for-
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mulation of any general scale invariant method, although there is some
leeway for special graphs (i.e. having some node properties, such as multi-
partite graphs). This is not to say that methods with non-local weights
(e.g. modularity, AFG, number of triangles, shortest path, betweenness)
should never be used for community detection at all, they are just never
scale invariant.
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4 Finding significant resolutions

IN this section we will focus on how to determine correct resolution
parameters for CPM. Although for the other methods it might also be
relevant to determine resolution parameters, they do have some nat-

ural resolution parameter, although it might not be the “best” one. For
the RB model this is γRB = 1 and for the AFG model γAFG = 0, in which
case both of course reduce to modularity. Although different resolution
parameters might be chosen—and in the light of the resolution limits per-
haps even should be chosen—there at least exists some natural resolution
parameter around which to try other resolutions. For CPM this is not the
case, since we simply choose some constant γCPM, and so we should need
some additional effort in determining when a certain resolution parameter
“works well”. Since we will only use the CPM method here, we will use
γCPM = γ to avoid cluttering the notation.

4.1 Scanning resolution parameter

Although we do not have any a-priori idea about a specific resolution pa-
rameter, there do exist some simple bounds of course. If we set γ = 0
the only trivial solution is all nodes in a single community. This can also
be seen from the condition of merging communities in Eq. (3.22). Assum-
ing the graph to be connected, we know that there are always at least two
communities that have at least one edge, and so that the density p between
the two communities is at least p > 0 = γ, and so by Eq. (3.22) the two
communities should be merged. Since this condition remains true until all
communities are merged, we are left with a single large community. The
objective function value at this point is thenH = −∑i j Ai j = −2m

On the other hand, if γ = 1 all nodes will be in a single community. Ap-
plying the merging condition in Eq. (3.22) again, starting from each node
in its own community, it is immediately clear that two nodes should never
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be merged, since any density p between two communities is never larger
than 1, and so p ≤ 1 = γ. The objective function value at this point is then
H = −∑i(Aii −γ) = n assuming there are no self loops. So, we know that
γ ∈ [0, 1] for unweighed graphs.

However, choosing a specific γ is not straightforward. Commonly, it is
assumed that “good” partitions are somehow “stable”. For example, one
could perturb slightly the network to see if the partition remains the same
(Mirshahvalad, Lindholm, Derlén et al., 2012) Another possibility is stabil-
ity with respect to various stochastic runs (Ronhovde and Nussinov, 2009).
If the algorithm returns partitions that are very different, the partition is
not very stable, and we might hence expect that the partition is not very
good. As before, we could measure the similarity between two partitions
using either NMI or VI. Since the VI is not normalized, it is a bit more sen-
sitive to any fluctuations in the partition, and so preferable for this task. So,
we might run the algorithm multiple times and see how stable the results
are using the VI.

Another approach would be to look at the stability of the partition with
respect to the resolution parameter γ (Delvenne, Yaliraki and Barahona,
2010). So, if a partition remains optimal over some relatively large range
[γ1,γ2], it should indicate it is a relatively good partition. We know that
for a certain specific γ communities should have an inner density higher
than γ and the density between any two communities is lower than γ. If
the same partition remains stable over the range of [γ1,γ2] then we know
that the communities have inner density γ2 (for γ > γ2 CPM splits com-
munities) and are separated by a density of γ1 (for γ < γ1 CPM merges
communities). Hence, the larger this range over which the partition re-
mains stable, the more clear-cut the community structure. Moreover, it is
the ratio γ2/γ1 between the two parameters that counts, not the absolute
difference γ2 − γ1. After all, if a communities have a density of γ2 = 0.80
and are separated by γ1 = 0.75 this is not quite the same as having a den-
sity of γ2 = 0.1 and separated by γ1 = 0.05. Hence, we will usually plot in
logarithmic scale.

However, if we need to scan the whole range of γ ∈ [0, 1] to some
granularity, and also rerun the algorithm multiple times for all values we
want to check, this becomes quite computationally intensive. Fortunately,
we need not check all values γ ∈ [0, 1]. This is readily clear because there
are finitely many partitions, while there are infinitely many values of γ.
But there is an even stronger property, namely that the optimal solutions
remain optimal for some range (Krings, 2012; Mucha, Richardson, Macon
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et al., 2010). More precisely, if σ is an optimal solution for γ1 and γ2, then
σ is also an optimal solution for all γ ∈ [γ1,γ2].

Theorem 4.1. LetH(γ,σ) be the CPM objective function. Then if

σ∗ = arg maxσ H(γ1,σ) = arg maxσ H(γ2,σ)

then σ∗ = arg maxσ H(γ,σ) for γ1 ≤ γ ≤ γ2.

Proof. This is a result of the linearity of H(γ,σ) in γ. To see this, suppose
that σ∗ is optimal in γ1 and γ2. Let γ = λγ1 + (1− λ)γ2 with 0 ≤ λ ≤ 1,
then by linearity ofH(γ,σ) in γ we have

H(γ,σ∗) = λH(γ1,σ∗) + (1− λ)H(γ2,σ∗).

SinceH(γ1,σ∗) ≤ H(γ1,σ) andH(γ2,σ∗) ≤ H(γ2,σ) for any σ ,

H(γ,σ∗) ≤ λH(γ1,σ) + (1− λ)H(γ2,σ) = H(γ,σ),

and soH(γ,σ∗) ≤ H(γ,σ) and σ∗ is optimal for γ ∈ [γ1,γ2].
That H(γ,σ) is linear in γ can be seen from the definition. Slightly

rewritten we obtain

H(γ,σ) = −∑
i j
(Ai j −γ)δ(σi ,σ j)

= −(E−γN) (4.1)

where E := ∑c ec the total of internal edges and N := ∑c n2
c is the sum of

the squared community sizes, and it is immediately clear this is linear in
γ.

Moreover, it turns out that N is also monotonically decreasing with γ.
This makes sense, since with increasing γ, more and more weight is put on
N, so to minimizeH smaller values of N are needed. This corresponds also
to finding smaller communities with increasing γ. Notice that for γ = 0
we have N = n2, while for γ = 1 we have that N = n.

Theorem 4.2. Let σz = arg maxσ H(γz,σ), z = 1, 2. Furthermore, let Nz =

∑c n2
c (σz) where nc(σz) denote the community sizes of the partition σz. If γ1 ≤

γ2 then N1 ≥ N2.

95



4 Finding significant resolutions

Proof. Let there be two different optimal partitions σ∗1 and σ∗2 for γ1 < γ2,
with costs

H(γ1,σ∗1 ) = −E1 +γ1N1,

H(γ2,σ∗2 ) = −E2 +γ2N2.

Then since both partitions are optimal for the corresponding resolution
parameters we obtain

−E1 +γ1N1 ≤ −E2 +γ1N2,

−E2 +γ2N2 ≤ −E1 +γ2N1.

Summing both inequalities, we obtain

−(E1 + E2) + γ1N1 +γ2N2 ≤ −(E1 + E2) + γ1N2 +γ2N1

and so γ1(N1 − N2) ≤ γ2(N1 − N2), and since γ1 < γ2 we obtain that
N1 ≥ N2.

Notice that if both partitions are optimal for both resolution parame-
ters, then necessarily N1 = N2, and so also E1 = E2. Hence, any two
equally good partitions, must have the same number of internal edges and
squared community sizes.

So, denoting by N(γ) the sum of squared community sizes correspond-
ing to the optimal partition for some γ, we obtain that N(γ) is a monotoni-
cally decreasing function. Because N(γ1) = N(γ2) if a partition is optimal
for both γ1 and γ2, this is a stepwise monotonically decreasing function.
The minimum minσ H(γ,σ) is hence a piecewise linear monotonically in-
creasing function.

Hence, we only need to find those points at which N(γ) changes, which
can be done reasonably effectively using bisectioning on γ. Let us assume
we start on some interval [γ1,γ2]. If N(γ1) 6= N(γ2), we know that N(γ) =

N(γ1) for some γ between γ1 and γ2. So, we can recursively split the
interval to check for this γ, up to some |γ2 − γ1| > δ, or on logarithmic
scale.

In addition, if we run multiple times the community detection on the
values of γ found by this algorithm, we also have some indication of the
stability of the partition.

Unfortunately, many networks results are often messy, so that it still
remains a challenge to choose a “correct” resolution parameter. Nonethe-
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Algorithm 7 Recursive bisectioning of the resolution parameter
function RESBISECT(γ1, γ2, map N)

if |N(γ1)− N(γ2)| > ε |γ1 −γ2| > δ then
γmid ← γ1+γ2

2
N(γmid)← COMMDETECT(γmid)
RESBISECT(γ1, γmid, N)
RESBISECT(γmid, γ2, N)

end if
end function
function GETRES

N ← empty map
RESBISECT(0, 1, N, orn logarithmic scale)
return N

end function

less, this method seems to work quite well on benchmark networks, as
displayed in Fig. 4.1. These benchmark networks have n = 103 nodes and
have an average degree 〈k〉 = 10 with a maximum degree of ∆ = 50. The
community sizes range between 10 and 100. The exponent of the power
law distribution of both the community sizes and the degree sizes was set
at τ = 2. It is quite clear that N is stepwise decreasing, and H piecewise
linear increasing. The plateaus (indicated by magenta) indeed correspond
to the planted partition for the benchmark network. The resolution param-
eter γ∗CPM we used for testing is also displayed. For µ = 0.1 this parameter
falls nicely in the plateau, but for µ = 0.5 the parameter is slightly off. In
addition, in the range of the plateau, the VI is relatively low (near 0), in-
dicating the partition is relatively stable. Hence, using such heuristics, it
seems possible to scan for “stable” plateaus of resolution values.

Even though this might point to resolution parameters γ for which
the partitions are somehow “good”, this does not say they are significant.
Moreover, we cannot say anything about which resolution level is prefer-
able in some way, and all partitions are (to some extent) valid partitions
of the network. So, we cannot say anything about the “correct” or “true”
partition, unless there is very clearly only a single resolution parameter
which (almost) always returns the same partition. After some reflection, it
is ironic we return to the question of what resolution returns a good par-
tition. After all, the initial goal of modularity was in fact to state what
partition is especially good.
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Fig. 4.1 Scanning resolution parameter

4.2 Significance of partition

Although modularity compares the number of edges within a commu-
nity to a random graph, this does not provide any significance of a par-
tition, since random graphs also can have quite high modularity. When
thinking about the significance of a partition, modularity goes about it the
wrong way around. We do not want to know the probability that random
edges fall within the found communities, as done by modularity. Nonethe-
less, explicitly calculating the actual probability that a partition is as dense
as detected seems to yield good results (Aldecoa and Marín, 2011, 2013).
Rather, we are interested in the probability that such a dense partition can
be found in a random graph. Comparing the observed modularity to the
expected modularity for a random graph gives some idea of the signifi-
cance of a partition (Reichardt and Bornholdt, 2006b). But preferably this
should be made more specific. More in particular, let E be again the num-
ber of edges within communities for the whole partition. Then we are in-
terested in the probability that a random graph (with the same number of
edges and nodes) contains a partition with at least E edges within com-
munities. Notice that this is quite different from the probability that a ran-
dom partition contains at least E edges, which is basically what modularity
does.

Unfortunately, this probability is reasonably difficult to calculate, but
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we can break it down in some parts. Let us focus on the question of the
probability of finding a certain dense subgraph within a random graph.
Once we have the probability of finding a certain dense subgraph, we
should be able to apply this recursively on the remainder of the graph and
partition. That is, once we know the probability to find a community C, we
look at the complementary graph with nodes V \C, and ask what the prob-
ability is to find some community in that graph. Unfortunately, we cannot
provide the exact probabilities, but obtain some insightful asymptotic re-
sults. In addition, the dominant terms of the asymptotic results suggest
some approximation of the probability of finding a dense partition in some
random graph. This can be used to determine which resolution parame-
ters are significant, in addition to the previously discussed results on stable
plateaus.

Preliminaries

We are interested in estimating the probability that a certain subgraph is
contained in a random graph. When speaking of a subgraph, we usually
mean an induced subgraph, that is a subset of nodes, with all the edges of
the that subset present in the subgraph. More specifically, a subgraph H
such that V(H) ⊂ V(G) and that E(H) = {(i, j) ∈ E(G) | i, j ∈ V(H)}. So,
we are given a certain number of vertices nc and edges mc and are asked
what the probability is that a random graph contains an induced subgraph induced subgraph

of the specified order with that many edges. For some specific subgraphs,
we need to take into account isomorphisms. Here we are only interested in
subgraphs with some number of edges, so that we do not need to address
this issue.

We write G ∈ G(n, p) for a random graph G from G(n, p), such that
each edge has independent probability p of being included in the graph,
the usual ER graphs. In this section we will use the notation |G| = |V(G)| = Erdös-Renyí graph

n for the number of nodes and ‖G‖ = |E(G)| = m for the number of
edges. We write Pr(H ⊆ G(n, p)) for the probability that H is an induced | · |, ‖ · ‖
subgraph of a G ∈ G(n, p). Notice that we will always use H ⊆ G to de-
note the fact that H is an induced subgraph of G. Let S(nc, mc) = {G |
|G| = nc, ‖G‖ = mc} denote the set of all graphs with nc = |G| vertices
and mc = ‖G‖ edges. Furthermore, we use a bit of abusive notation and
write Pr(S(nc, mc) ⊆ G(n, p)) for the probability that a graph G ∈ G(n, p)
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contains one of the graphs in S(nc, mc), i.e.

Pr(S(nc, mc) ⊆ G(n, p)) = Pr(
⋃

H∈S(nc ,mc)

H ⊆ G(n, p)).

Notice that whenever n = nc we obtain the ordinary binomial proba-
bilities

Pr(S(nc, mc) ⊆ G(nc, p)) =
(
(nc

2 )

mc

)
pmc(1− p)(

nc
2 )−mc .

Let us denote by X the random variable that represents the number of oc-
currences of a subgraph with nc vertices and mc edges in a random graph.
Let XH be the indicator value that specifies whether a subgraph H of order
nc = |H| in the random graph equals one of the graphs in S(nc, mc), so that

XH =

{
1 if ∃H ∈ S(nc, mc)

0 otherwise

which of course comes down to

XH =

{
1 if ‖H‖ = mc and |H| = nc

0 otherwise
.

We can then write X = ∑H XH where the sum runs over all ( n
nc
) possible

subgraphs H. Obviously then, X is a non-negative random variable and
Pr(X > 0) = Pr(S(nc, mc) ⊆ G(n, p)). We will rely on two useful inequal-
ities: Markov’s inequalityMarkov’s

inequality

Pr(X ≥ a) ≤ E(X)

a
,

which for us will be most useful in the form Pr(X > 0) = Pr(X ≥ 1) ≤
E(X), and Chebyshev’s inequalityChebyshev’s

inequality

Pr(|X−E(X)| ≥ λ) ≤ E(X2)−E(X)2

λ2 ,

or in a form more useful to us

Pr(X = 0) ≤ Pr
[
|X−E(X)| ≥ E(X)

]
≤ E(X2)−E(X)2

E(X)2 .
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This way of estimating probabilities is known as the second moment method.

Subgraph probability

We here present bounds for estimating the probability of a subgraph with
nc vertices and mc edges occurring in a random graph. We start off with a
particular easy one. But first, let us analyse E(X). Here it is convenient to
define

r = Pr(S(nc, mc) ⊆ G(nc, p)).

Theorem 4.3. The expected number of occurrences of an induced subgraph can be
written as

E(X) =

(
n
nc

)
r (4.2)

Proof. By linearity of expectation, we have E(X) = ∑H E(XH), and be-
cause XH is an indicator variable E(XH) = Pr(XH = 1). Notice that H has
nc nodes, so that H ∈ G(nc, p), and Pr(XH = 1) = r. There are ( n

nc
) sub-

graphs of nc nodes in a graph with n nodes, which concludes the proof.

Using Markov’s inequality, this leads to the following bounds.

Theorem 4.4. The probability that G(n, p) contains an induced subgraph with nc
nodes and mc edges can be bounded by

1− (1− r)b
n

nc c ≤ Pr(S(nc, mc) ⊆ G(n, p)) ≤
(

n
nc

)
r.

Proof. The upper bound is immediate from Theorem 4.3 and Markov’s in-
equality. For the lower bound, consider a partition of G ∈ G(n, p) into
equal parts H1, . . . , Hk of size nc, for which k = bn/ncc. Again, for each
of these parts, the probability to have mc edges Pr(XHi = 0) = 1 − r,
and the probability that none of these parts have mc edges is (1− r)bn/ncc,
since they are independent. Hence, the probability that Pr(X = 0) ≤
(1− r)bn/ncc.

In order to improve on the lower bound, we need to calculate E(X2).
The idea here is to calculate the expected value of the number of pairs of
subgraphs that have mc edges. If the two subgraphs are independent this
average is fairly simple to calculate. In the case of overlap between the
two this is more complicated. Nonetheless, we can then separate into three
parts: the parts of the two subgraphs without overlap, and the part that
overlaps. Working this out brings us the following lower bound.
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4 Finding significant resolutions

Theorem 4.5. The probability that G(n, p) contains no induced subgraph with nc
nodes and mc edges can be bounded by

Pr(S(nc, mc) * G(n, p)) ≤ 1
E(X) ∑

u≥1

(
nc

u

)(
n− nc

nc − u

)
min((u

2),mc)

∑
m(∆)

(
M(u)

mc −m(∆)

)
pmc−m(∆)(1− p)M(u)−(mc−m(∆)). (4.3)

with M(u) = nc(nc−1)−u(u−1)
2 .

Proof. The variable X2 can be decomposed into parts XH × XH′ , such that
we need to investigate the probability that both H and H′ have mc edges.
So, we can separate this expectancy in parts of partially overlapping sub-
graphs, like

E(X2) = ∑
u

∑
|H∩H′|=u

Pr(‖H‖ = ‖H′‖ = mc), (4.4)

where u represents the overlap between the different subgraphs. If H and
H′ are (edge) independent, so when u < 1, the answer is simple, and is
given by Pr(XH = 1)2. For u ≥ 1 the answer is more involved.

So let us consider two subgraphs H and H′ such that |H ∩ H′| = u ≥ 1.
Let us separate this in three independent parts, the overlap ∆ = H ∩ H′,
and the remainders A = H − ∆ and B = H − ∆. Clearly then, |∆| = u,
and |A| = |B| = nc − u. The probability that ‖H‖ = ‖H′‖ = mc can then
be decomposed in the probability that the sum of these independent parts
sum to m. The probability that ‖H‖ = mc can be decomposed as

Pr(‖H‖ = mc) = ∑
m(∆)

Pr(‖∆‖ = m(∆))

Pr(‖H‖ = mc | ‖∆‖ = m(∆)).

where m(∆) signifies the number of edges within ∆. Similarly, we arrive at
the conditional probability for both subgraphs H and H′. However, since
we have conditioned exactly on the overlapping part, the two remaining
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parts are independent, and we can write

Pr(‖H‖ = ‖H′‖ = mc | ‖∆‖ = m(∆)) =

Pr(‖H‖ = mc | ‖∆‖ = m(∆))2.

This probability can be calculated and yields

Pr(‖H‖ = mc | ‖∆‖ = m(∆)) =(
M(u)

mc −m(∆)

)
pmc−m(∆)(1− p)M(u)−(mc−m(∆)),

where M(u) = nc(nc−1)−u(u−1)
2 . We then obtain

Pr(‖H‖ = ‖H′‖ = mc) = ∑
m(∆)

Pr(‖∆‖ = m(∆))

(
M(u)

mc −m(∆)

)2
p2(mc−m(∆))(1− p)2M(u)−2(mc−m(∆))

which leads to(
(nc

2 )

mc

)
pmc(1− p)(

nc
2 )−mc ∑

m(∆)

(
M(u)

mc −m(∆)

)
pmc−m(∆)

(1− p)M(u)−(mc−m(∆)),

where m(∆) ranges from 0 to the minimum of mc and the number of pos-
sible edges (u

2).

Now counting the number of subgraphs that overlap in u nodes, for
each choice of subgraph H, we choose u nodes in H, and nc − u nodes in
the remaining n− nc nodes. In total, there are then

Cu =

(
n
nc

)(
nc

u

)(
n− nc

nc − u

)
overlapping subgraphs with u nodes in common. Concluding, we arrive
at

E(X2) = ∑
u

Cu Pr(‖H‖ = ‖H′‖ = mc | |H ∩ H′| = u).
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Writing this out, we see that

E(X2) = E(X) ∑
u≥1

(
nc

u

)(
n− nc

nc − u

)
min((u

2),mc)

∑
m(∆)

(
M(u)

mc −m(∆)

)
pmc−m(∆)(1− p)M(u)−(mc−m(∆)) +E(X)2,

where the last term E(X)2 comes from the non-overlapping part. Work-
ing out the Chebyshev inequality, we obtain the inequality stated in the
theorem.

Asymptotic analysis

We focused on subgraphs of a fixed size nc in the previous section. How-
ever, for asymptotic analysis, this is not interesting, as it is already clear
that all fixed size subgraphs are contained in the random graph asymptot-
ically. So let us consider subgraphs of size proportional to n, so that it is of
size sn, with 0 < s < 1. Of course, then mc should also grow accordingly,
and we consider the subgraph with a fixed density q. For the asymptotic
analysis, we can afford to be a bit sloppy with this density, and consider
(sn)2 possible edges in the subgraph of sn nodes, so that mc = q(sn)2,
and we now denote by S(n, q) the subgraphs with density q instead of the
actual number of edges. Using the previously calculated bounds, we can
then prove the following asymptotic statement.

Theorem 4.6. Asymptotically almost surely, no graph contains subgraphs of size
sn, with 0 < s < 1, with density q 6= p, and will contain subgraphs of density
q = p of any size, i.e.

lim
n→∞ Pr(S(sn, q) ⊆ G(n, p)) =

{
0 if p 6= q

1 if p = q
(4.5)

Proof. We will first prove the 0-statement, for which the upper bound suf-
fices. Applying Stirling’s formula to ( n

nc
) we obtainStirling’s formula (

n
nc

)
∼

√
n√

2πnc(n− nc)
exp

(
nH

(nc

n

))
=

1√
2πs(1− s)n

exp(nH(s)),
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where H(p) is the binary entropy binary entropy

H(p) = −p log p− (1− p) log(1− p). (4.6)

Working out yields

E(X) ∼ exp
[
nH(s) + (sn)2H(q)

]
2πsn

√
s(1− s)q(1− q)n

pq(sn)2
(1− p)(1−q)(sn)2

,

or

E(X) ∼ exp
[
nH(s)− (sn)2D(q, p)

]
2πsn

√
s(1− s)q(1− q)n

,

utilising the binary Kullback-Leibler divergence (Cover and Thomas, 2012) Kullback-Leibler
divergence

D(q, p) = q log
q
p
+ (1− q) log

1− q
1− p

. (4.7)

Since D(q, p) > 0 for p 6= q we can conclude that E(X) → 0 for n → ∞
when p 6= 0.

We need the second moment for the lower bound. This can be rewritten
as ∑u ∑m(∆) f (u, m(∆)) with

f (u, m(∆)) =

(
sn
u

)(
(1− s)n
sn− u

)(
(sn)2 − u2

q(sn)2 −m(∆)

)
p−m(∆)(1− p)−u2+m(∆)(

n
sn

)(
(sn)2

q(sn)2

)
Using the notation u = αsn and q(sn)2 − ∆ = β((sn)2 − u2) this becomes

f (α,β) =

(
sn
αsn

)(
(1− s)n

s(1−α)n

)(
(1−α2)(sn)2

β(1−α2)(sn)2

)
(

n
sn

)(
(sn)2

q(sn)2

)
p−(q−β(1−α

2))(sn)2
(1− p)(q−β(1−α

2)−α2)(sn)2

Taking logarithms on Sterling’s approximation, we obtain

log
(

n
k

)
= O

(
nH

(
k
n

))
,
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Applying this approximation, we obtain

log( f (α,β)) = O
[
n
(

sH(α) + (1− s)H
(
(1−α)s

1− s

)
− H(s)

)
+

n2s2
(
(1−α2)H(β) + (q−β(1−α2)) log

1− p
p
−

α2 log(1− p)− H(q)
)]

.

Using again the binary Kullback-Leibler divergence D(p, q), we can sim-
plify this to

log( f (α,β)) = O
[
nQ + n2s2(D(q, p)− (1−α2)D(β, p))

]
,

with Q =
(

sH(α) + (1− s)H
(
(1−α)s

1−s

)
− H(s)

)
. The range over which α

and β can vary are as follows. Since u ranged from 1 to nc = sn, α ranges
from 0 to 1. The range of β depends onα:

β ∈


[

q−α2

1−α2 ,
q

1−α2

]
ifα2 < q

[
0,

q
1−α2

]
ifα2 ≥ q

.

Notice that we are interested in the case that p = q, so that D(q, p) = 0.
Then D(β, p) > 0 for α < 1 because of the range of β, and Q < 0 if α = 1
because H(s) > 0 for 0 < s < 1, so that Pr(X = 0) → 0 as n → ∞ for
p = q.

This suggests that any partition (in a finite number of communities) of
the random graph will asymptotically contain only communities of den-
sity approximately p. This matches some results on community detection
on random graphs using CPM. Whenever γ < p−ε only a single commu-
nity will be detected, while for γ > p +ε only communities consisting of
only single nodes will be detected, while for p−ε ≤ γ ≤ p +ε a transition
takes place where several communities are detected with density approxi-
mately p. This transition interval shrinks with increasing n, so that ε → 0
for n → ∞, consistent with the asymptotic analysis provided here. The
only difference of course is that for γ relatively high, we start to divide
into a number of communities that grows with n, so that the limit is no

106



Significance of partition

10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

pp

γCPM

N
/n

2

n = 103

n = 104

Fig. 4.2 Resolution profile for ER graph

longer correct. Nonetheless, it explains reasonably well the transition, and
is illustrated in Fig. 4.2. Here, the transition becomes more clear for larger
graphs, and approaches asymptotically the limit at γ = p indicated by the
dotted line in the figure.

Considering that−(sn)2D(q, p) dominates both the upper and the lower
bound, we can write that Pr(S(sn, q) ⊆ G(n, p)) = eΘ(−(sn)2D(q,p)), where
f = Θ(g) is the asymptotic notation to state that f is asymptotically bounded
below and above by g. Indeed, this provides the crucial insight into the
asymptotic behaviour. For each p 6= q the probability decays as a Gaussian,
with a rate depending on the “distance” between p and q as expressed by
the Kullback-Leibler divergence. Furthermore, the larger the proportional
subgraph as expressed by s, the less likely a subgraph of different density
than p can be found. Combining this idea for all communities, the prob-
ability for a partition σ with community sizes nc and densities pc should
then scale as

Pr(σ) = exp
(
−∑

c

(
nc

2

)
D(pc, p)

)
. (4.8)

Notice that for the two trivial partitions of all nodes in a single commu-
nity, or every node in its own community, we obtain that Pr(σ) = 1. This
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implies that such partitions are never significant, since they can always be
found in any graph. We then define the significance as

Sig(σ) = − log Pr(σ) = ∑
c

(
nc

2

)
D(pc, p) (4.9)

for finding significant partitions. Ideally, a significant partition should
have a low probability of appearing in a random graph, hence the signifi-
cance Sig(σ) should be relatively high.
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Fig. 4.3 Significance for benchmark graphs

For benchmark networks, indeed this measure of significance works
quite well, see Fig. 4.3. There, we report the same results as earlier (see
page p. 97), but we now include the significance results (referring to Sig(σ)).
As we can see, the significance is maximal for the plateau at which we
recover the “correct partition”. Nonetheless, the measure indicates that
slightly more refined partition (just right of the plateau) are also quite
significant. Still, the measure of significance is actually maximal for the
plateau.

For hierarchical benchmark graph results are similar, see Fig. 4.4. These
networks have n = 103 nodes, and each node has a degree of ki = k = 20.
There are 10 large communities of 100 nodes each, and each large commu-
nity consists of 5 smaller communities of 20 nodes each. There we observe
two plateaus for µ2 = 0.1 (we have used µ1 = 0.1 for both results), corre-
sponding to the two levels of the hierarchy. The significance of the more
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Fig. 4.4 Hierarchical scanning results

refined partition (the second level) is higher however, whereas the more
broad partition (the first level) is less significant. This makes sense since the
refined communities are very clearly defined, and so are very unlikely to
be found in a random graph. The broader communities are also relatively
clearly defined, but it contains a refinement that is less likely to be present
in a random graph. For µ2 = 0.5 the two plateaus have merged into a
single plateau, which is the most significant partition found. Again, this
makes sense, since the smaller communities are much less clearly defined,
while most links still fall within the larger community (since µ1 = 0.1).
The maximal significance attains about 1.4 · 104 for µ2 = 0.5, while for
µ2 = 0.1 the maximum is about 3.7 · 104. This suggest that the commu-
nities are more clearly define for µ2 = 0.1 then for µ2 = 0.5, as expected.
Hence, the significance of a partition can be quite well used to find out
what partitions are relatively significant at what resolution.

4.2.1 Scanning for significance

We know how to scan the resolution parameter range without too much
calculation by bisectioning. In addition, we have seen that the signifi-
cance Sig(σ) has the tendency to be maximal for some interesting parti-
tion. Hence, we might alter the bisectioning algorithm somewhat in order
to look for the γ that maximizes the significance. So, in this case, we only
use the significance to choose a particular value of γ that works “well”. Of
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course, this only returns a single value of γ, which in addition might be
a local optimum. To obtain the full overview of the resolution profile, the
scan has to be done over the whole range of γ, as in section 4.1. An al-
ternative approach would be to optimize significance itself, which we will
consider in the next section.

By bisectioning, we know we don’t have to scan some γ ∈ [γ1,γ2] if
N(γ1) = N(γ2) for some γ1 and γ2. Hence, this reduces significantly the
number of values of γ which we have to scan. If we are only interested
in the γ for which Sig(σ) is maximal, we can additional only scan those
ranges for which the significance is maximal. However, recursion is inher-
ently depth first. It tries to bisect as long as necessary some range, and
only returns whenever it has reached some limit. In this case, it would be
preferable to have a breadth first search, so as to cover a broad range of
values. In order to do so, we will rely on a queue instead of recursing, see
Algorithm 8.

Algorithm 8 Recursive bisectioning maximizing the significance
function SIGRES(γ1, γ2, results)

Q← empty queue
Q.push([γ1,γ2])
max_sig← 0
while not Q.empty do

[γ1,γ2]← Q.pop()
results(γ1) = GETRESULTS(γ1)
results(γ2) = GETRESULTS(γ2)
dN← |N(γ1)− N(γ2)|
dG← |γ1 −γ2|
mS← max(sig(γ1), sig(γ2)
if dN > ε and dG > δ and mS >= max_sig then

max_sig←mS
γmid ← γ1+γ2

2
Q.push([γ1,γmid])
Q.push([γmid,γ2])

end if
end while

end function
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4.2.2 Optimizing significance

Scanning for a significant resolution, as in the previous section, provides
us with a way to choose one of the partitions returned by CPM. However,
it might be that there are other partitions, not revealed by CPM, that have
a higher significance still. Hence, we might also try to optimize the signif-
icance directly. This comes down to using the significance as an objective
function instead.

Notice that optimizing significance is no longer scale-invariant. After
all, given a partition and a graph, pick a subgraph that consists of only a
single community. Then the significance Sig(σ) of that partition, defined
on the subgraph equals 0, since D(pc, p) = 0. This is also the case for all
nodes as singleton communities, since then (n

2) = 0. Since this constitutes
the minimum, it is unlikely that no other partition provides a higher sig-
nificance. In particular, splitting the community in two smaller communi-
ties will in general give a non-zero significance. Hence, the same partition
no longer remains optimal on all community induced subgraphs, and the
method is hence not scale-invariant.

Optimizing significance is not too difficult. As before, we look at the
difference of moving some node i from a community r to a community s.
Let us assume that i has eir edges to community r and eis edges to commu-
nity s. The increase in significance is then

∆Sig(σ) =
(

nr

2

)
D(qr, p)−

(
nr − 1

2

)
D(q′r, p)(

ns

2

)
D(qs, p)−

(
ns + 1

2

)
D(q′s, p),

where

q′r =
mr − eir

(nr−1
2 )

q′s =
ms + eis

(ns+1
2 )

.

We can then perform the same greedy algorithm as before. However, if we
also want to aggregate the graph, and then still correctly move communi-
ties, we again need the node size ni, similar as for CPM. Suppose we have
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this node size, then moving a node with size ni amounts to

∆Sig(σ) =
(

nr

2

)
D(qr, p)−

(
nr − ni

2

)
D(q′r, p)(

ns

2

)
D(qs, p)−

(
ns + ni

2

)
D(q′s, p),

where

q′r =
mr − eir

(nr−ni
2 )

q′s =
ms + eis

(ns+ni
2 )

.

Hence, we can use this to optimize significance using the Louvain algo-
rithm (Algorithm 3, see p. 45), similar as we did for CPM.

The benchmark results are displayed in Fig. 4.5. It is clear that using
significance to scan for the best γ parameter for CPM works quite well. In
fact, is works better to scan for the best γ parameter then using our pre-
calculated γ∗ using information about the mixing parameter µ, as done in
section 2.4.3. Surprisingly however, optimizing significance itself results in
a worse performance than scanning for the optimal γ parameter for CPM.
This is presumably due to some local minima in which the significance
optimization gets stuck, while this is not the case for CPM. In particular,
it is likely that it will find denser subgraphs within the LFR communities,
so that it doesn’t find the actual communities. Nonetheless, optimizing
significance works reasonably well, and outperforms Infomap in this case.
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5 Modularity with negative links

UNTIL now we have constrained the weights on the graph to be
positive (wi j > 0). However, these weights might also be nega-
tive, a situation which comes quite natural when studying for

example conflict. In these situations any animosity (e.g. war, fighting,
conflict or distrust) can be represented by a negative link (some weight
wi j < 0) and the opposite (e.g. alliances or friendship) by a positive link
(some weight wi j > 0). Although the exact weight of course often plays
some additional role, the distinction between positive and negative links
is primal. Often we will simply consider negative links as having weight
−1 and positive links having weight +1, although most concepts can be
easily extended to weighted graphs. These type of networks are known
as signed networks (or graphs) (Zaslavsky, 1982). In this chapter we will
analyse how this affects the proposed methods and offer some solutions.

5.1 Social balance

The theory of social balance tries to explain the structure of positive and social balance

negative links in signed networks (Cartwright and Harary, 1979, 1956; Harary,
1953; Cartwright and Harary, 1968). The idea is that whenever you are
friends with somebody, you and your friend should have rather similar
beliefs. Although friends perhaps tend to resemble each other more and
more closely, it also works in the other direction: people tend to befriend
those whom they share interests with (birds of a feather flock together).
This latter process is known as homophily—like for the own kind. Ene- homophily

mies on the other hand should then be expected to think differently. We
will elaborate on social balance in chapter 7, and it will be the main focus
in the second part.

The main result of social balance is that a graph that is balanced can
be split into factions. Each faction corresponds to a set of nodes that is
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connected positively, while between factions there are only negative links.
The number of factions is related to it being either weakly or strongly so-
cially balanced. For a strongly socially balanced graph, it can be split into
(at most) two factions, while a weakly socially balanced graph can be split
into (possibly) more factions. More details can be found in chapter 7. The
correspondence between factions and communities is clear, and we use the
two words interchangeably in this chapter. However, instead of having
relatively little links between communities, they should be negative.

5.1.1 Frustration

Of course, in reality we do not expect social balance to hold exactly, but
only to some degree. A natural question therefore is whether it is possible
to cluster a signed graph so that is has the least number of incorrect edges
(i.e. positive link between factions or negative link within factions). At this
point it is useful to introduce the negative and positive part of a signed
graph. Let us denote by G− = (V, E−) the negative graph and by G+ =

(V, E+) the positive graph, so thatG±,E±

E− = {(i, j) ∈ E | wi j < 0} (5.1)

E+ = {(i, j) ∈ E | wi j > 0}. (5.2)

The adjacency matrices A+ and A− are then defined accordingly, so that
A+

i j = 1 whenever (i, j) ∈ E+ and zero otherwise, and similarly A−i j = 1
if (i, j) ∈ E− and zero otherwise. The original adjacency matrix is then
A = A+ + A−. In addition, we will denote the signed adjacency matrix by
Ã = A+ − A−, so that

Ãi j =


−1 if (i, j) ∈ E−

0 if (i, j) /∈ E

1 if (i, j) ∈ E+

(5.3)

We assume that wi j 6= 0 whenever (i, j) ∈ E, so that there are no edges
that have zero weight. We also define the positive and negative weights
as w+

i j = max{wi j, 0} and w−i j = max{−wi j, 0}, so that if wi j > 0 then

w+
i j = wi j and w−i j = 0 and if wi j < 0 then w−i j = −wi j and w+

i j = 0 and

so w±i j ≥ 0. In order to find factions such that there are the least number of
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violating edges, we need to minimize

HSB = ∑
i j

Ãi j(1− δ(σi ,σ j)).

Rewriting this, and removing those parts that do not depend on δ(σi ,σ j)

this is equal to minimizing

HSB = −∑
i j

Ãi jδ(σi ,σ j) (5.4)

Positive edges between communities and negative edges within commu-
nities are said to be frustrated. We also refer to Eq. 5.4 as the frustration,
and we would like to minimize it.

Notice that if we are looking for only two communities, this reduces
to bi-partitioning, which can effectively be done with the spectral method
explained in section 2.3.4. We defined a vector s such that si = −1 if node i
is in community 1 and si = 1 if i is in community 2. If u is the eigenvector
corresponding to the largest eigenvalue, then taking

si =

{
1 if ui ≥ 0

−1 if ui < 0

gives a reasonable partition in two groups. In particular, if the network is
strongly socially balanced, so that it can be split exactly in two groups, this
method will give an exact result (see Theorem 7.10). This can be seen as
follows. Let x be a non-zero vector such that x>x = 1. Then

x> Ãx = ∑
i j

xi Ãi jx j.

Let xix j > 0 if Ãi j = 1 and xix j < 0 if Ãi j = −1, so that each xi Ãi jx j > 0
since the graph is balanced. Suppose u j = x j for all j 6= i but that uixi < 0.
Then u> Ãu < x> Ãx which contradicts the fact that u is the eigenvector cor-
responding to the maximal eigenvalue. Hence, indeed, if the graph can be
partitioned into two groups, this split will be found exactly by the spectral
bi-partitioning.

But imagine there are only a few negative links, and many positive
links. According to this method, everything that is positively linked should
be put in the same community. So, even though there might be communi-
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ties that are well defined but only positively linked, they will be missed
by using this method. So, this method might be too strict. In fact, the LP
method has a similar problem (see section 2.2.5 on p. 30). It essentially
might put all nodes in the same community whenever they are positively
connected.

Hence, although this frustration model would indeed minimize the
number of frustrated links, it might not be exactly what we want. The
method merges communities which are only relatively sparsely connected,
while we might be interested in detecting separate communities.

5.2 Weighted models

So far we have mostly discussed unweighed models, and simply stated
that most models can be easily adapted for weighted networks. Perhaps
the problem of negative links is quickly solved by simply allowing nega-
tive weights.

Let us first consider some of the weighted counterparts of the earlier
models. We define si = ∑ j wi j as the strength of a node, as the weightedstrength

counterpart of the degree. Moreover, the total weight w = ∑i j wi j =
1
2 ∑i si

is the weighted counterpart of the number of edges.
Let us look to the weighted version of modularity for instance. We then

arrive at
pi j =

sis j

2w
for the expected weight of link (i, j), similar as before. The complete weighted
form of modularity then becomes

Q =
1

2w ∑
i j

(
Ai jwi j −

sis j

2w

)
δ(σi ,σ j).

It is clear that quickly problems emerge if we allow wi j < 0, since it
might for example be that w = 0. Moreover, if si < 0 and s j > 0, the ex-
pected weight pi j < 0. In fact, even for a trivial example this does not work
well. Consider the example provided in Fig. 5.1. The weighted degree of
the three nodes a, b and c is sa = 1, sb = 1 and sc = −1. The total weight is
w = ∑ wi j = 1. The expected values pi j = sis j/2w equal the edge weights
wi j. Hence wi j − pi j = 0 for all links, and each possible community config-
uration results in a modularityQ = 0, while the appropriate configuration
is clear from the figure: a and b belong to the same community, and c to an-
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aka = 1 b kb = 1

c kc = −1

Fig. 5.1 Problem of modularity with negative links

other community. Some modification to modularity is therefore required
to detect communities in networks with (also) negative links.

Now let us take a look at the RB model, which for the configuration
model gives largely similar issues as the modularity. But perhaps the ER
null-model is less sensitive to issues of this kind. Let us define p = w/(n

2).
This amounts of course to a CPM with a rescaled resolution parameter,
which is slightly easier to consider. The total weight inside a community is
then given by ec = ∑i j wi jδ(σi , c)δ(σ j, c), and the weighted density by pc =

ec/(
n
2). In this case, communities should simply have a weighted density

of pc > γRB p, while the density between communities c and d should be
pcd < γRB p. Notice that for either null-model, using γRB = 0 we arrive at
the earlier model of frustration.

Let us try to repair the deficits of modularity in case there are negative
links. In general we could write

H = −H+ +H− (5.5)

whereH+ is the objective function defined on the network of positive links
and H− on the networks of negative links. The contribution for the neg-
ative links H− is the opposite of that of positive links H+ since we want
to minimize the number of negative links within a community instead of
maximize them. Choosing different H± leads to different community de-
tection methods, similar as before, but adapted for when negative links are
present.

Not all models necessarily have problems with negative weights, and
let us briefly review which ones do and which don’t. Let us first work out
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the RB model, which then becomes

HRB = −∑
i j
(w+

i j A+
i j −γ+RB p+i j )δ(σi ,σ j)

+∑
i j
(w−i j A−i j −γ−RB p−i j )δ(σi ,σ j).

since wi j = w+
i j − w−i j and either A+

i j = 1 or A−i j = 1 we can simplify to

HRB = −∑
i j
(wi j Ai j − (γ+RB p+i j −γ−RB p−i j ))δ(σi ,σ j).

For the configuration null-model this gives

HRB = −∑
i j

(
wi j Ai j −

(
γ+RB

k+i k+j
2m+

−γ−RB

k−i k−j
2m−

))
δ(σi ,σk). (5.6)

So, when distinguishing negative and positive links, using the configura-
tion null model is only equivalent to the original method when

γ+RB

k+i k+j
2m+

−γ−RB

k−i k−j
2m−

= γRB

(k+i − k−i )(k
+
j − k−j )

2(m+ −m−)

which in general will not be the case. However, when using the ER null-
model, we arrive at

HRB = −∑
i j
(wi j Ai j − (γ+RB p+ −γ−RB p−))δ(σi ,σ j) (5.7)

so that whenever γ+RB p+ − γ−RB p− = γRB p or when γRB =
γ+RB p+−γ−RB p−

p the
original method is equivalent. Similarly for CPM, the original method is
equivalent when γCPM = γ+CPM −γ−CPM.

One might wonder whether it is not simply an issue of shifting the adja-
cency matrix A by some constant in order to make it positive. Let us briefly
reflect on this possibility. We thus have the following shifted weighted ad-
jacency matrix A′ = A + c for some constant c ≥ 0 such that A′i j ≥ 0 for all
i j. We already saw that modularity has some issues with negative weights,
so maybe they’ve disappeared when simply shifting the matrix. Indeed
the example on Fig. 5.1 can be trivially repaired for modularity by simply
shifting the matrix with a constant c = 1. However, in general, this way
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of repairing things does not coincide with our solution in Eq. 5.5. How-
ever, for CPM (and so by extension RN and the RB method with the ER
null model), this simply corresponds to a shift in the resolution parameter
γCPM, which is not the case for modularity. Arguably, if a partition is opti-
mal when shifting the matrix, but not according to Eq. 5.5, it does not seem
to constitute a good partition. Nonetheless, we might wonder if there al-
ways exists some c such that the partition is optimal for both modularity on
a shifted matrix and for Eq. 5.5. This remains an open question, but given
the problems of modularity described in Chapter 3, it is doubtful. At any
rate, modularity is not simply shift invariant in this sense, whereas CPM is
shift invariant (up to a concomitant shift in the resolution parameter).

5.3 Implementation & benchmark

The implementation of the negative links is not too difficult in most algo-
rithms reviewed in section 2.3. We already briefly saw the application of
the spectral bisectioning, which is easily applied to any matrix. For the
other algorithms we have to make a small change however.

Let us review the greedy method, which forms the core of the Louvain
method, for negative links. Let us take the RB model with the configu-
ration null-model as an example. The change when moving node i from
community c to community d is in general then

∆H(σi = c 7→ d) =
[
(e+id −γ〈e+id〉pi j)− (e−id −γ〈e−id〉pi j)

]
−[

(e+ic −γ〈e+ic 〉pi j)− (e−ic −γ〈e−ic 〉pi j)
]

.

Earlier however, it was clear that a community needed to be connected,
and so it made sense to only consider the communities of neighbours. This
is no longer the case unfortunately when introducing negative links. After
all, suppose for example that k+i = 0, node i has only negative links. In
that case we seek to minimize e−ic −γ〈e−ic 〉pi j which probably happens when
e−ic = 0. Hence, when negative weights are included, we are obliged to
loop through all communities, not only the communities of neighbours. So
the greedy method should be only slightly adapted, and is displayed in
Algorithm 9.

Another small change in the implementation that makes it slightly eas-
ier to work with negative links is to work with layers. This can then also layers

be easily extended to work with more complicated graphs, with multiple

121



5 Modularity with negative links

Algorithm 9 Greedy method for negative links/multiple layers
function GREEDY(Graph G)

initialize σi ← i for all nodes i
while improvement do

for all nodes i do
for all communities c do . All communities

∆c ← ∑` ∆H`(σi = r 7→ c) . Sum over all layers
end for
σi ← arg maxc ∆c . Greedily, maximum choice

end for
end while
return σ

end function

types of links, or multiple types of models for different layers. In general,
the idea is to have different graphs G1 = (V, E1), G2 = (V, E2), . . ., with
the same nodes in it, and that we calculate the cost by summing the objec-
tive function for these different layers. Each layer only contains positive
weights. So if the original graph G contains both positive and negative
links, we split it in a positive part G+ and G− as stated earlier, which rep-
resent our layers G1 and G2, and we keep track of which layer contains the
negative links, so that we try to maximize that objective function, instead of
minimize it. If we have a dynamic graph so that at different times there are
different edges present/absent, we can use a similar technique. Normally
some links between graphs at consecutive times are added, so as to obtain
a dynamic view of the partition (Mucha, Richardson, Macon et al., 2010). In
that way, we can keep most of the original implementation details. Specif-
ically, for the Louvain method, this way of implementing allows to keep
the same functions for aggregating the graph (layers) as before.

In order to see if a method is performing well, we need to adapt the
benchmark networks slightly. We can do so by first generating an ordi-
nary benchmark, so that with probability µ links fall within a community,
and with probability 1 − µ they fall outside a community. We introduce
also the mixing parameter µSB, so that with probability µSB a link within
a community is positive, and with probability 1− µSB such a link is nega-
tive. Similarly for links outside a community, with probability µSB this is
a negative link, while with probability 1 − µSB this is a positive link. So,
for µSB = 0 all links within communities are positive and all links between
communities negative.
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Fig. 5.2 Multi-slice modularity to layers

We can repeat again the same analysis we did before on when the com-
munities are well defined. For the different densities we obtain

p+in =
(1−µ)(1−µSB)〈k〉

nc − 1
p−in =

(1−µ)µSB〈k〉
nc − 1

p+out =
µµSB〈k〉
n− nc

p−out =
µ(1−µSB)〈k〉

n− nc

so that if µSB < 1/2, we obtain that communities are well defined as long
as

µ <
n− 2nc + 1

n− 1
.

Surprisingly however, if µSB > 1/2 the communities are well defined if

µ >
n− 2nc + 1

n− 1
.

This is due to the effect that there are relatively many negative links within
a community if µSB > 1/2. Effectively there is a phase transition at µSB =

1/2 so that quite suddenly, the regime where the communities are well
defined changes.

The benchmark results are displayed in Fig. 5.3 for CPM and modular-
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Fig. 5.3 Benchmark results with negative links

ity with negative links. We use the parameters of γ±RB = 1 (i.e. modularity)
and γ±CPM = p±, where p± is the average positive/negative density within
a community. The results are reasonably similar, and both work quite well
until µ− < 0.5, and as can be expected if becomes increasingly more dif-
ficult for higher µ+. For µ− > 0.5 neither CPM nor modularity is able to
recover the planted partition correctly. CPM does seem to perform a little
bit better for high µSB and high µ than modularity however.
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IN this section we will see two applications of community detection.
The first focuses on conflict in international relations, and tries to de-
termine the influence of trading communities on the probability of con-

flict. The second focuses on citation networks and the effect of negative
links in networks.

6.1 Communities in international relations

We will investigate international relations, which have both positive as
well as negative components. Negative links are operationalised as con-
flict, while positive links are represented by alliances (for example a de-
fence pact).

When in the early 1990s the Communist bloc fell apart, many wondered
what type of world would lie ahead. Two broad scenarios were sketched.
On the one hand, democracy was seen as the sole surviving ideology, and
conflict was expected to diminish, and Francis Fukuyama proclaimed “the
end of history” (Fukuyama, 1992). On the other hand, conflict was no
longer fuelled by ideological considerations and Samuel Huntington ar-
gued that conflict would simply run across different lines, namely civi-
lizations, in his book entitled The Clash of Civilizations (Huntington, 1996).
Clearly it would be interesting to see to what extent communities of inter-
national relations would correspond to what scenario.

To that end, we analyse international relations taken from the Corre-
lates of War (Ghosn, Palmer and Bremer, 2004; Gibler and Sarkees, 2004)
data set over the period 1993–2001, where military alliances can be rep-
resented by positive links and conflicts by negative links. The data set
contains a wide variety of disputes, for example border tensions between
Colombia and Venezuela, the deployment of Chinese submarines to Japanese
islands, and Turkish groups entering Iraqi territory. Disputes were as-
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signed hostility levels, from “no militarized action” to “interstate war,” and
we chose the mean level of hostility between two countries over the given
time interval as the weight of their negative link. The alliances we coded
one of three values, for (1) entente, (2) non-aggression pact, or (3) defence
pact. The disputes w−i j (t) and alliances w+

i j (t) are both normalized to val-

ues in the interval w±i j (t) ∈ [0, 1] for each year t. They bear equal weight

in the overall link value wi j(t) = w+
i j (t) − w−i j (t), and the final weight is

wi j =
1
T ∑t wi j(t) with T the total number of years included. For example,

if two countries have a defence pact for a single year, the weight wi j = 1/T,
while if they have had war for three years (and no other alliances or con-
flicts), wi j = −3/T. The largest connected component consists of 161 nodes
(countries) and 2517 links (conflicts and alliances).

The result of the analysis using the RB model with configuration null
model adapted for negative links is shown in Fig. 6.1. Countries of the
same colour belong to the same community, which in this context is per-
haps more appropriately labelled a power bloc. The power blocs can be
identified as follows: (1) the West; (2) Latin America; (3) Muslim World;
(4) Asia; (5) West Africa; and, (6) Central Africa. If we detect communi-
ties by using only positive links, there is an agreement of about 64% with
the configuration in Fig. 6.1, while if using only negative links, there is an
agreement of about 30%, measured using NMI.

This resembles quite closely the configuration sketched by Huntington
(1996), with a few notable exceptions. The West African power bloc is an
additional insight that is absent in Huntington’s configuration. A major
difference with Huntington is that China itself does not constitute a sepa-
rate bloc, nor does Japan or India. Some other noteworthy differences are
Pakistan and Iran which are grouped with the West, while South Korea
and South Africa are grouped with the Muslim World.

If we run the algorithm with γ+RB = 0.1 and γ−RB = 1, North Amer-
ica merges with Latin America, while Europe becomes an independent
community, and North Africa and the Middle East align with Russia and
China. When setting γ+RB = 1 and γ−RB = 2, in contrast, former Soviet coun-
tries separate from Russia and form an independent community. Using
a range of values for γ±RB, one can detect various levels in the community
structure.

These results do not imply that conflicts take place between power
blocs only, as 24% of all conflicts actually take place within blocs. For exam-
ple, Georgia and Russia had serious conflicts, and DR Congo and Rwanda
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Fig. 6.1 Communities in the conflict and alliance network

had theirs, but each of these pairs is grouped together nevertheless. In
these cases, the alliances overcame the conflicts in the grouping, confirm-
ing that a configuration of international relations is more than the sum of
bilateral links.

In sum, although Huntington’s configuration of civilizations was ques-
tioned (Henderson and Tucker, 2001; Russett, Oneal and Cox, 2000), it
seems to be fairly robust and with some marked exceptions is confirmed by
our analysis. However, this does not imply that this is only influenced by
civilizations, since many other underlying factors may play a role. In fact,
the more interesting question is how such a structure comes about. Many
theories could be relevant, including the democratic peace theory (Hensel,
Goertz and Diehl, 2008; De Tocqueville, 2002), which predicts few conflicts
between democratic countries but fails to predict that in actuality, most
conflicts occur between democratic and non-democratic countries; the re-
alist school (Kissinger, 1994), which emphasizes geopolitical concerns; and,
finally, the trade-conflict theory (Polachek, Robst and Chang, 1999), which
argues that (strong) trade relations diminish the probability of a dispute,
or lower its intensity. We will investigate this in in the remainder of this
section, with a particular focus on the effect of trade on conflict.
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6.1.1 Direct trade and conflict

Theories about the relationship between trade and conflict have a long tra-
dition in international relations scholarship. Most of these focus on bilat-
eral relationships, explaining whether and how increased levels of trade
between two states affect their probability of direct conflict. This focus on
only the links involving the two states is known as a dyadic analysis, where
a dyad simply refers to the two nodes (states in this case), and the relation-dyad

ship between them. A smaller body of work also examines the ways in
which dyadic dependence affects the probability of systemic conflict, al-
though the findings from this work remain tentative (Oneal and Russett,
2011, 2005). Recent work has begun using network analytic measures to
demonstrate that indirect trade relations also have important effects on
interstate conflict (Maoz, 2006, 2009; Böhmelt, 2009; Dorussen and Ward,
2010).

A significant limitation of the existing literature is its almost exclusive
focus on direct trading relationships. Analysing only dyadic trade relations
over-simplifies the complexity of interdependence and, as a result, loses
sight of the ways in which trade reduces conflict even among states that
trade very little with each other. We argue that indirect trade dependence
creates significant costs of conflict in addition to those created by the levels
of direct trade between states. In addition, the conflict-reducing effects of
interstate trade are heightened within trading communities.

Several studies have provided evidence that indirect trade relations re-
duce conflict. The probability of conflict is lower among dyads with more
trading partners in common (Maoz, 2009; Dorussen and Ward, 2010) and
among dyads that are generally more well-connected to other states in the
trade network (Dorussen and Ward, 2010). Yet this literature has not fully
explained the causal mechanisms underlying these effects. Dorussen and
Ward (2010) argue that the key mechanism at work here is informational:
trade decreases the likelihood of conflict by facilitating regular interaction,
informational exchange and cultural exchange. While acknowledging this
important contribution, we argue that indirect trade relations reduce the
probability of conflict in two additional ways, which we refer to as the
“Combatant Mechanism” and the “Non-combatant Mechanism.”

The combatant mechanism

That trade between potential combatants may affect their incentives to
fight has long been recognized, yet we argue that these incentives may
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also be affected by their trade relationships with other states. We build on
the opportunity-cost theory of interdependence. Traditional formulations
of this argument focus on the extent to which the potential participants in
a conflict stand to have their trade with each other interrupted or other-
wise adversely affected (Angell, 1933; Polachek, 1980; Oneal, Oneal, Maoz
et al., 1996; Oneal, Russett and Berbaum, 2003). Thus far, the opportunity-
cost model has focused on the potential effects of conflict between a pair
of states on their trade with each other. If a pair of states trades with each
other relatively little (or not at all), this theory would predict that trade
would have little effect on the probability of war between them.

Yet in a world of a complex trade network conflict may also interrupt
trade flows other than those between the potential combatants. Although a
pair of states may not have a trade relationship with each other, they would
jeopardize their trading relationships with other states by going to war, and
therefore have a disincentive to do so. Entering a conflict could interrupt a
state’s trade with states not involved in the conflict in various ways. Trade
relations are highly interdependent, so the terms of trade within any pair
of states depend on the terms of trade they have with other states (Ander-
son, 1979; Anderson and van Wincoop, 2003). A warring state may divert
resources previously used to produce certain exports in order to facilitate
war-time production, thus reducing or cutting off those export flows. Con-
flict could result in decreased demand for the state’s exports to the extent
that demand is dependent on other trade flows interrupted by the conflict.
Conflict may interrupt the supply of imports to the state to the extent it
affects the supply chain for those imports. Finally, even when states do not
directly trade with each other, indirect trade dependence increases the op-
portunity cost of a potential conflict between them because the uncertainty
associated with war may cause their trading partners to seek other, more
stable markets or suppliers (Maoz, 2009; Crescenzi, 2005; Gasiorowski and
Polachek, 1982; Polachek, 1980). In summary, the combatants themselves
might incur a cost, even though they do not trade directly.

The non-combatant mechanism

Indirect trade dependence also reduces the likelihood of conflict in a sec-
ond way that has been under-theorized in the trade-and-conflict litera-
ture. Conflict creates costs for states that are not involved in it, but that
are dependent on trade relations with the warring states. By interrupt-
ing trade flows, conflicts create negative externalities for non-participant
states, including by decreasing their access to commerce, increasing the
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costs of their imports and decreasing the demand for their exports. As
a result, indirect trade dependence reduces the probability of conflict by
increasing the incentives for third parties to attempt to prevent the con-
flict (for related arguments, see (Dorussen and Ward, 2008; Böhmelt, 2009,
2010)). While many states do not have the capability to significantly influ-
ence the potential combatants, others can and do use their power to deter
wars that would damage international commerce (Gilpin, 1981; Krasner,
1999; Kindleberger, 1986). If the non-combatants are too diffuse, diverse
or numerous, problems of collective action might preclude an interven-
tion (Olson, 1965). However, if these states are sufficiently interdependent
themselves, and not too diverse, they may overcome problems of collective
action, and intervene. In summary, even countries not directly involved in
the conflict can be affected by the conflict through indirect trade networks,
and so have some interest in preventing it.

6.1.2 Trading communities and conflict

In which situations are the disruptions to trade caused by conflict most
likely to create the types of costs that, in turn, reduce the probability of con-
flict? In addition, how do we systematically account for the ways in which
indirect, networked trade relations affect conflict behaviour? Dorussen
and Ward (2010) propose that we can systematically capture the effects of
indirect trade links by using the concept of maxflow, particularly becausemaxflow

it may be a good proxy for the information flow between the members of
a dyad that is facilitated by their trading relations. The maxflow can be
defined as follows. Let r and s be two nodes, which play the role of source
and sink. We seek to maximize the total flow ∑i fis towards s, where fis is
the flow from node i to node s, under the constraint that each flow does
not exceed its capacity wi j, and the flow into a node equals the flow from a
node ∑ j fi j = ∑ j f ji. In total then the maxflow is defined by

max ∑
i

fis such that

∑
j

fi j = ∑
j

f ji for all i 6= r, s

fi j ≤ wi j.

The maxflow is the same as the minimum cut between two nodes, and so
equal to the number of independent paths if each link has unit capacity.
The maxflow is thus a useful concept for understanding the effects of the
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informational mechanism proposed by Dorussen and Ward (2010).
Yet this concept does not capture other ways in which the networked

structure of international trade may be relevant to the mechanisms we pro-
pose. We illustrate this point using the stylized exchange networks pro-
vided in Fig. 6.2 where each edges has unit capacity. In network (a), the
maxflow between nodes 1 and 2 is equal to 4 because a connection can be
made between 1 and 2 using 4 possible independent routes: 1-3-2, 1-4-2,
1-5-2, and 1-6-2. In network (b), the maxflow between nodes 1 and 2 is also
equal to 4. The additional flows in network (b) do not provide additional
possible independent paths between 1 and 2. Thus, a theory based on the
concept of maxflow would make equivalent predictions regarding the ex-
tent to which indirect trade links between 1 and 2 would affect their con-
flict propensity in the two networks. Yet the two networks vary in terms of
density: network (b) is significantly more densely connected than network
(a). In terms of trade flows, network (b) can be thought of as more highly
interdependent than network (a).

1 2

3 4

5 6

(a) Sparse

1 2

3 4

5 6

(b) Dense

Fig. 6.2 Two trade networks of different densities

We argue that this difference between the two groups is crucial. In
a highly interdependent group, when individual trade flows are cut off
by conflict among the group’s members, the probability that this will ad-
versely affect other flows is higher. Therefore, the costs of a conflict involv-
ing two members of such a group would be especially high. Preventing
such a conflict may be difficult and costly itself, but the group’s members
will have particularly important incentives to overcome this collective ac-
tion problem. By contrast, when the potential combatants are not embed-
ded within a single group of highly interdependent states, fewer flows may
be interrupted by the conflict, and thus the economic costs of the conflict
would be significantly lower, everything else equal.

This argument points to the concept of communities. Trade creates
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groups of states at the sub-global level in which the effects of indirect trade
dependence are especially significant. Within these trading communities,
states have many trading partners in common and, therefore, their depen-
dence on each other is often far greater than their dyadic trade levels would
suggest. Some dyads within a trading community trade significantly with
each other, such as two developed states that trade differing manufactured
goods they specialize in producing. Other dyads within a trading commu-
nity may trade directly very little, however. This can occur, for example,
when two states are at opposite ends of a single supply chain. Another
example is of two states that are individually dependent on exporting and
importing similar goods to and from the same third country.

The key factors that have shaped the structure of the global trading net-
work are also responsible for the formation of trading communities. Trade
flows highly unevenly across the international system, which is not at all
surprising when taking economic factors into account (Gleditsch, 2003).
Geographic distance creates transaction costs that promote trade among
close neighbours (Picciolo, Squartini, Ruzzenenti et al., 2012). This sug-
gests that trading communities may have a strong regional component,
although this may not always be the case. A state with a highly special-
ized production capability may be in the same trading community with a
distant state that has a complementary demand for that specialized good.
More generally, we would not always expect that a group of geographically
clustered underdeveloped states would be in the same trading community.
We can expect such states to trade relatively little with each other. Thus, if
they export to and import from differing markets, they are likely to be in
differing trading communities. Africa is a prime example. It would indeed
be surprising to find that Africa consists of a cohesive trading commu-
nity given that most states in the continent are poor and sell many of their
raw goods to richer states outside the continent. Historical factors likely
also contribute significantly to the formation of trading communities. We
would expect, for example, that colonization and decolonization have had
significant impacts on the structure of world trade, with former colonies
continuing to trade significantly with their former colonizers. More re-
cently, many of the trading relations established within the Soviet Union
have continued among the former Soviet states, and thus we would expect
a significant likelihood that these states are in the same trading community.

These arguments lead to the principal hypothesis that the probability of
conflict is lower between state dyads that are members of the same trading
community.
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6.1.3 The trade network

The first step in testing our hypothesis is to construct the international
trade network, which we do by using the data provided by Gleditsch (2002).
Constructing this network requires us to assign weights to the dyadic links
between states, which we do using the trade flows between them. Specif-
ically, we define these weights using the formula for dyadic trade depen-
dence provided by Oneal and Russett (1997) and used by much of the lit-
erature on which we build:

wt,i j =
xt,i j + xt, ji

GDPt,i
,

where xt,i j is the total exports from country i to country j in year t (which
equals the total imports to country j from country i), and GDPt,i is the total
GDP of country i for year t.

We maximized the RB model with the configuration null model to de-
fine trading communities at an annual basis over a range of resolutions.
Fig. 6.3 shows representative partitions for the year 2000 using resolutions
levels that yield 3, 7 and 14 trading communities. At a relatively low res-
olution level, we observe 3 large trading communities. One community
includes the bulk of the Western Hemisphere in what appears to be a US-
centric community. In 2000, Argentina significantly devalued its currency,
causing short-term changes in its trade relations. In previous years, Ar-
gentina was a member of the Western Hemisphere trading community. A
few states outside the Americas are also members of this trading commu-
nity, notably the United Kingdom and Israel, a finding likely driven by
their close trade links with the United States. Others, such as Norway, Ice-
land and Ireland, have less significant trade links with the United States,
but do have close links with the United Kingdom, suggesting that they are
in this community largely because the United Kingdom is also. The second
large community we see at this resolution level includes the former Soviet
Union, Eastern Europe and parts of the Middle East. Finally, the rest of the
world belongs to a trading community that includes Japan, China, India,
much of Europe, South-East Asia and most of Africa. This is arguably the
most surprising among the findings at this level of resolution because it
includes several major economies that are geographically dispersed. The
surprising nature of this result suggests, in fact, that the trading commu-
nity defined at this resolution level is actually an amalgamation of several
sub-communities.
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As the resolution level increases, so does the number of trading com-
munities defined. Fig. 6.3b shows a partition with 7 communities. The
Western Hemisphere community remains largely intact, which is not sur-
prising given the level of dependence of most of these states on U.S. trade,
and vice versa. Nonetheless, at this resolution level, the United Kingdom
is no longer part of the Western Hemisphere community, and instead be-
longs to a smaller community consisting of Northern and Central Europe
along with several of their African trading partners. We noted above that
countries such as Norway, Iceland and Ireland were likely only defined as
being in the Western Hemisphere community by virtue of their trade with
the United Kingdom, so it is not surprising to observe that they “follow”
the United Kingdom into this smaller community. Other states, such as
Sweden, Finland and Denmark, are now defined as being in this commu-
nity despite having previously been defined as part of the larger Russia-
centred community rather than the Western Hemisphere community. This
suggests that, at the lower resolution level, these countries are borderline
cases; indeed, several other partitions at the low resolution level include
these in the same community as the United States and United Kingdom.
Aside from these states, the community of former Soviet Bloc states re-
mains whole at this resolution level. The only former members of the So-
viet Union not in the latter community are the Baltic states, a finding that is
not surprising given that these economies have distanced themselves from
Russia more so than any others. The largest community found in the low
resolution level breaks into several communities at this level. The most no-
table of these are trading communities that include (1) China and many of
its smaller trading partners; (2) South-East Asia, Australia and Japan; and
(3) many states bordering the Indian Ocean, including South Asia and East
Africa.

Finally, at a higher level of resolution, we observe several new trading
communities. Three changes relative to the medium resolution are worth
noting. First, Northern Europe and Central Europe seem to have split into
two communities at high resolution. Second, several states in South Amer-
ica, most notably Brazil, form a sub-community within the larger Western
Hemisphere community. Finally, Australia, New Zealand and several of
the Pacific Island states have separated from South-East Asia into a smaller
trading community that is most likely driven by Australian trade links. A
large proportion of global trade is conducted within trading communities.

At a low level of resolution, most global trade has been conducted
within the trading communities. Interestingly, the percentage of global
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trade conducted within these large communities decreased from about 90%
in 1960 to about 55% in 2000, which suggests that globalization may have
evened out global trade flows to a significant extent. At the medium level
of resolution, about 40% of trade is conducted within trading communi-
ties, despite the fact that only approximately 20% of dyads are members
of the same trading communities. This result means that a disproportion-
ately large percentage of global trade is conducted within these groups. Fi-
nally, at a high level of resolution, approximately 30% of trade is conducted
within the 15% of dyads that are joint members of these small subgroups.

6.1.4 Results

To test our hypothesis, we first create a variable that indicates whether, in
a particular year, both members of a dyad were members of the same trad-
ing community (SAME TRADING COMMUNITY). As noted in section 2.3,
the modularity maximization algorithm may produce slightly different re-
sults each time it is run at a given resolution because there are many local
maxima at which modularity is optimized. We could certainly choose one
that appeared to have high face validity and test our hypothesis using it,
but the validity of our results would depend on the validity of that par-
ticular partition. Instead, we use a construction that takes advantage of
this feature of modularity maximization. For each resolution level, we run
the modularity maximization algorithm 100 times. In each partition, we
recognize that there is a certain degree of uncertainty regarding whether
states have been correctly classified into trading communities. By running
the algorithm many times for each dyad-year, we then code SAME TRAD-
ING COMMUNITY as “1” if it appears in the same trading community in
more than 50% of the partitions and “0” if it does not. Essentially this is a
rounded consensus matrix.

Control variables

As stated earlier, many variables are known to affect the propensity for
conflict. We include these variables to show the effect of trade communities
goes beyond that. We use Zeev Maoz’s construction of dyadic militarized
interstate disputes (MAOZMID) as the dependent variable (Gochman and
Maoz, 1984; Jones, Bremer and Singer, 1996). We coded the variable as “1”
for dyad-years in which there was an onset of a militarized interstate dis-
pute in which force was threatened or used, and “0” otherwise . We mod-
ified the coding of MAOZMID such that it indicates whether a MID was
initiated in the year following the year in question, which has the same
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(a) Low resolution (γRB = 0.6)

(b) Medium resolution (γRB = 1.1)

(c) High resolution (γRB = 1.7)

Fig. 6.3 Trading Communities in 2000
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effect as lagging all of the independent variables by one year. Because we
argue that SAME TRADING COMMUNITY should have a negative, signif-
icant relationship with MAOZMID regardless of the level of direct trade
dependence, we control for this (DYADIC TRADE DEPENDENCE LOW) us-
ing the same formula in Eq. (6.1.3) used to calculate the weights in the
trade network (Oneal and Russett, 1997). We include this control in Model
1 and remove it in Model 2 to demonstrate that our primary result is ro-
bust to the inclusion and exclusion of this measure. We also control for the
maxflow (MAXFLOW), to capture some of the indirect effects informational
mechanisms may have on conflict propensity. If SAME TRADING COMMU-
NITY has a significant relationship with MAOZMID despite the inclusion
of these controls, this would provide evidence that the clustered structure
of the trade network has an important relationship with conflict in ways
not previously understood.

We also include several other controls that may affect the propensity for
dyadic conflict and that have been used in much of the trade-and-conflict
literature (Oneal and Russett, 1997; Gartzke, 2007; Dorussen and Ward,
2010). Democratic peace theorists argue that democracies have a lower
propensity for conflict, especially with each other (Doyle, 1986; Bremer,
1992, 1993; Maoz and Russett, 1992, 2012; Ward and Gleditsch, 1998). We
therefore control for the lower (DEMOCRACY LOW) and higher (DEMOC-
RACY HIGH) democracy scores in the dyad using the Polity IV data (Mar-
shall and Jaggers, 2002). Shared membership in inter-governmental orga-
nizations (IGOs) may reduce the probability of conflict (Russett, Oneal and
Davis, 2003; Dorussen and Ward, 2008), so we control for the number of
shared IGOs memberships in the dyad using the Correlates of War 2 Inter-
national Governmental Organizations Data (Pevehouse, Nordstrom and
Warnke, 2004). Economic development may affect conflict propensity, so
we follow Gartzke (2007) and others in controlling for the lower of the GDP
levels in the dyad-year. We also control for the effects of monadic power on
the probability of conflict. The most powerful states are more actively en-
gaged in interstate relations and may therefore be more likely to fight wars.
We therefore include a dichotomous variable (MAJOR POWER) coded “1”
for dyads in which at least one member is one of the five post-World War II
major powers (i.e., United States, USSR/Russia, United Kingdom, China,
and France). Allied states may be less likely to fight each other, so we in-
clude a dichotomous variable (ALLIANCE) coded “1” for dyads that have
concluded an entente, neutrality pact or defence pact based on the Corre-
lates of War (COW) Alliance Data Set (Singer and Small, 1966; Small and
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Singer, 1969). States may be more likely to attack weaker opponents. We
therefore control for the natural logarithm of the ratio of the stronger state’s
COW capabilities index (CINC) to that of the weaker state (CAPABILITY

RATIO).
We control for several geographic factors known to affect the propen-

sity of dyadic conflict. Including geographic controls allows us to conduct
a particularly strict test of the relationship between trading communities
and conflict given that we know trading communities are clustered geo-
graphically. Wars are generally less costly for states to conduct against their
immediate neighbours, so we construct a dichotomous variable coded “1”
for dyads that share a land border or that are separated by less than 150
miles of water (CONTIGUITY). We also include a control measuring the nat-
ural logarithm of the distance between national capitals (DISTANCE). We
adopt the method of Beck, Katz and Tucker (1998) of including temporal
spline variables and a measure of the duration of dyadic peace (PEACEYEARS)
to control for duration dependence. Dyad-years with ongoing MIDs are
excluded to avoid address problems of serial correlation. Our analysis in-
cludes the years 1960 to 2000.

Regression analysis

Using this model, we tested our hypothesis over a large range of commu-
nity detection resolutions. Table 6.1 provides the results of these models for
resolutions yielding 3 (Low), 7 (Medium) and 14 (High) trading communi-
ties. The results provide substantial support for our hypothesis. States that
are members of the same trading community are less likely to experience
militarized disputes with each other. Just as importantly, these results are
consistent whether or not we take into account the extent to which those
states are directly dependent on each other in terms of trade. This means
that the pacific effects of trade that result from joint membership in a trad-
ing community do not depend on the extent of direct trade dependence,
which is the key explanatory variable in extant theories of trade of con-
flict. In terms of substantive effect, dyads in the same trading community
are 48%, 47%, and 59% less likely to experience a militarized dispute in
Models 1, 3 and 5, respectively.

The control variables generally have the expected relationships with
conflict and are consistent with the results of earlier studies (Oneal and
Russett, 1997, 2011; Gartzke, 2007). Consistent with Oneal and Russett
(1997) and Gartzke (2007), we find that DEMOCRACY LOW is associated
with a lower probability of conflict, while DEMOCRACY HIGH is associ-
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ated with a higher probability. Interestingly, unlike existing studies, we
find that dyadic alliance relationships do not have a significant relationship
with conflict. Taking only dyadic trade dependence into account, allies are
less likely to fight wars, as Oneal and Russett (1997) and Gartzke (2007)
found. However, when we also account for indirect trade dependence by
including trading community membership in the model, allies are no less
likely to fight than non-allies. This result suggests that trading community
membership explains conflict behaviour to a sufficient extent as to obscure
the effects of direct alliance links. In other words, it may be the case that
indirect trade links drive the significant relationship between alliances and
conflict found in other studies.

In addition to the results reported in Table 6.1, we used a model iden-
tical to Model 1 to test our hypothesis over other resolution levels. At all
resolution levels between 3 and 15 trading communities, we find that SAME

TRADING COMMUNITY has a significant (p < 0.05), negative relationship
with MAOZMID, which indicates that, within a significant range, our re-
sults do not depend on the resolution level we specify. In other words,
if we view the world as consisting of 3 very large trading communities,
such as those defined in Fig. 6.3a, then joint membership in these commu-
nities is associated with a lower probability of conflict. Yet even if we take
those communities and divide them into sub-communities, such as those
defined in Fig. 6.3c (and even slightly smaller ones), joint membership in
these smaller groups continues to be associated with a lower probability of
conflict. We also follow Dorussen and Ward (2010) in testing whether our
results are consistent when we examine only “politically-relevant dyads”,
i.e., those that are either contiguous or include at least one major power.
For this sample, we found that SAME TRADING COMMUNITY has a signif-
icant (p < 0.05) and negative relationship with MAOZMID for the same
range of levels of aggregation as reported above (i.e., 3 to 15 trading com-
munities).

Our results therefore demonstrate that across a broad range of plausi-
ble sizes of trading communities, dyads within these communities have a
lower probability of conflict. Nonetheless, we find that joint membership
in small groups is not significantly associated with a lower probability of
conflict. In such small groups, there may not be sufficient (or any) mem-
bers with the capacity to pay the costs of preventing a potential conflict.
Similarly, we also find that joint membership in too large groups is not sig-
nificantly associated with a lower probability of conflict. In groups so large
and diverse, the group’s members may not be capable of overcoming the
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collective action problem of preventing the conflict. These results therefore
suggest that, while the relative density of trade links is an important pre-
dictor of conflict, this factor interacts with group size in ways that merit
further investigation.

6.2 Scientific communities and negative links

Although negative links are often present in networks, they are not always
being discerned explicitly. For example, consider the internet, where web
pages are linked through hyperlinks. Of course these links can be nega-
tive in its context, for example, “this guy [http://www.someguy.com] is a
complete idiot”. More often, insulting language is used in internet fora or
in comments on news articles, and are often directed and even personal in
nature. Assuming these links to be positive (or rather, ignoring completely
they might be signed links) then renders understanding the network quite
difficult. Nonetheless, this is a common assumption.

This assumption is not limited to online content. Science, for instance,
is characterized by cooperation and benign disagreement, but sometimes
also by epistemic rivalry. In democratic politics, disagreement with op-
ponents is endemic as it is vital for political identity and to attract voters.
Military alliances and conflicts, and economic collaboration and competi-
tion are examples already discussed. In social fields in general, people are
embedded in a variety of cooperative and conflicting relationships, origi-
nating from, or leading to various groups.

As a case in point, Shwed and Bearman (2010) recently used the mod-
ularity approach to study consensus formation in scientific communities.
Not having scientific consensus on certain issues might prevent taking fur-
ther action. For example, for some time there was a debate about whether
smoking was cancerous or not, something considered rigorously proven
nowadays. Knowing when there is scientific consensus on some subject
and when not, might help understanding the difficulties in reaching sci-
entific consensus. Although some disagreement will always be present
in ordinary scientific practice, it should be distinguished from epistemic
rivalries, where different paradigms may clash and there is little or no con-
sensus at all.

Shwed and Bearman claimed their approach enables them to distin-
guish consensus and benign criticism on the one hand from epistemic ri-
valry on the other hand. Their data were scientific journal citations, which
they interpreted for their modularity analysis as positive links. On the ba-
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sis of these citation data, they determined scientific communities and their
salience, i.e. the extent to which those communities stood out from a ran-
dom network, as indicated by the raw modularity scores.

Let us go over some of the assumptions that Shwed and Bearman made
to get their results. Their first assumption is that in “normal science” (Kuhn,
2012), most citations signal agreement. This assumption is entirely plau-
sible (Hanney, Frame, Grant et al., 2005) and there is significant support
for it in the literature (Case and Higgins, 2000; White, 2004). Their sec-
ond assumption is that the comparatively few citations that represent dis-
agreement have no ramifications for the communities detected. We will
demonstrate, in contrast, that a small proportion of negative citations can
substantially perturb the results. Their third assumption is that epistemic
rivalries between communities are marked by a lack of cross-community
citations. In other words, contending factions largely ignore each other.
They infer from this assumption that if the salience of communities dimin-
ishes, consensus increases. However, a lack of citations between groups
does not necessarily imply opposing views. On the contrary, they might
simply indicate that the communities have different interests, rather than
having opposing views. Such groups detected in scientific citation net-
works are what we would call thematic communities, i.e. groups of schol-
ars specializing in, and writing about the same themes or topics. They are
less likely to be positional communities of scholars who agree with com-
munity members and disagree with other communities’ views. This is a
consequence of scholars citing mostly papers that they consider relevant,
regardless of their (dis)agreement with those papers.

In the following, we will analyse these issues, and demonstrate that it is
nearly impossible to analyse contention and consensus within or between
communities when treating all links as positive, opposite to their sugges-
tion. First, we analyse patterns of scientific citations on “smoking is cancer-
ous” and on “solar radiation is cancerous”, the latter being the same data
that Shwed and Bearman used. As a baseline, we treat all links as positive,
and test whether salient community differences arise when a small ran-
domly chosen portion of the links is coded as negative. Second, we study
the evolution of the “smoking is cancerous” field over time, by combin-
ing community detection with automated content analysis of the abstracts
of the pertaining papers. This shows that these communities are indeed
more likely to be thematic communities, i.e. scientific sub-disciplines that
focus on different subjects, rather than positional communities that have
different views. Third, we analyse a dataset on a public debate in politics
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wherein positive and negative links were distinguished during data cod-
ing. We show that the community structure obtained when—incorrectly—
assuming all links to be positive is radically different from the community
structure obtained when we properly distinguish between positive and
negative links.

6.2.1 Effect of negative links

Let us now scrutinize Shwed and Bearman’s assumption that the compara-
tively few citations that represent disagreement have no substantial impact
on the communities detected. While some scientific citations are certainly
critical, perhaps the proportion of negative references is so low that it is
safe to assume that the comparatively few citations that represent disagree-
ment have no impact on the communities found?

To see if this is the case we examine two cases: The “solar radiation
is cancerous” and the “smoking is cancerous” datasets. We received the
“solar radiation is cancerous” data from Uri Shwed, so these citations are
exactly the same as they used in their paper. We collected the “smoking
is cancerous” dataset from the ISI Web of Science using the same proce-
dure Shwed and Bearman followed. For the latter data we also have the
abstracts of most papers, allowing us to analyse to some extent the scien-
tific content of the communities, which we can’t for Shwed and Bearman’s
data.

To distinguish negative from positive references, we would have to ac-
quaint ourselves with the vernacular of cancer researchers and read thou-
sands of papers, which is beyond feasibility. So, to test the impact of neg-
ative links, we therefore set up the following simple procedure. We take
a random sample of the links in the corpus, turn them into negative links,
and perform community detection on that network. We repeat this proce-
dure a hundred times for each year, and measure each time the difference
between the “negatively modified” assignment of nodes into communities
and the original assignment, and do this for five percent and ten percent of
negative links, respectively. To quantify the similarity of the assignments,
we use the measure of Normalized Mutual Information (NMI), as detailed
in Section 2.4.2. In order to make sure that the observed differences do
not arise because of the heuristic nature of the algorithm, which may lead
to somewhat different outcomes in different runs, we perform the same
comparison but without changing any of the links into negative.

The results are displayed in Fig. 6.4; vertical bars indicate variation and
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Fig. 6.4 Difference in communities when making links negative

mean over 100 runs of the NMI score, and the comparison treatment with
only positive links is called “independent.” The figure shows that even
a low proportion of negative links can cause assignments to differ more
strongly than when all links are positive. This is the case both for the
“smoking is cancerous” data Fig. 6.4a and for the “solar radiation is cancer-
ous” data Fig. 6.4a. Obviously these differences become larger and more
salient when the percentage of negative links increases. Our findings sug-
gest that Shwed and Bearman’s assumption that the comparatively few
citations that represent disagreement have no impact on the communities
detected is incorrect. We have shown that negative links do have an impact
and cannot be ignored if one wants to study contention.

We may expect that in actuality, negative links will lead to even more
pronounced differences. The reason is that by sampling a certain per-
centage of the links randomly, we ignored any pattern in the negative
links, while we know from both social balance theory and empirical studies
(Szell, Lambiotte and Thurner, 2010) that negative links tend to be present
in between specific communities, not randomly throughout the network.
Those networks with a small percentage of negative links are thus likely to
have a more pronounced community structure than we find here. More-
over, such a small percentage of negative links is normally present in sci-
ence. During periods of epistemic rivalry, when the percentage of negative
links is higher, the difference will usually be larger. As said, the actual
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pattern of negative links is unknown to us and remains an empirical ques-
tion. Nonetheless our analysis shows that a different community structure
is likely to be detected when negative links are explicated.

6.2.2 Dissensus or specialization?

Now let us focus on Shwed and Bearman’s assumption that epistemic ri-
valry, i.e. a lack of consensus, is characterized by a lack of cross-community
citations. To examine what these communities could represent with respect
to a scientific field, we use the “smoking is cancerous” dataset which con-
tains abstracts along with citations. We first extract all words used in all
abstracts of the corpus. We assume that a group of articles that uses a
shared vocabulary distinct from other groups discusses similar topics or
methods. The common technique for extracting terms specific to a (set of)
document(s) is the so-called Term Frequency-Inverse Document Frequency
(tf-idf). Let w be some word (term), and let nw(d) be the number of occur-
rences of the word in some document d. Furthermore, let Nw represent
the number of documents in which the word w occurs. Then the tf-idf is
defined as

tf-idf(w, d) =
nw(d)

maxw nw(d)
log

N
Nw

where N is the total number of documents. The underlying principle is
that for a certain term to be of specific interest or salience in a document,
it should be frequently mentioned in that specific document, and not that
much elsewhere (Manning, Raghavan and Schütze, 2008). For the groups
(that we first detect through modularity on the citation network), if terms
are common in a specific group and rare elsewhere, this indicates that pa-
pers in that group concern similar themes or topics. At the group level,
we focus on the five most salient terms according to this tf-idf measure.
Moreover, by using the multi-slice modularity method (Mucha, Richard-
son, Macon et al., 2010), we obtain a dynamic view of the evolution of the
groups, displayed in Fig. 6.5, together with the five most salient terms for
each group. This graphical representation of group dynamics as an allu-
vial diagram was first used by Rosvall and Bergstrom (2010). To avoid a
cluttered image, we only show the twelve largest groups, which over the
period of observation have at least 1000 papers. Within a group, it is pos-
sible that scholars criticize each other, but we can’t detect contention since
we do not know which citations are negative.

We can, however, see how the community structure changes over time
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with respect to common themes or topics. The different communities seem
to focus on different research topics. Some communities seem to be re-
searching different types of cancer, such as lung cancer, breast cancer, pan-
creatic cancer or colon cancer. Other communities seem to be (at least
partly) founded on a common research background, such as the p53 tu-
mour suppressor (Cho, Gorina, Jeffrey et al., 1994) and the gstm1 gene. Fi-
nally, some communities focus on two products of tobacco (smoke), namely
two nitrosamines, nnk and nnal that are associated with risk of cancer.
Most of the changes in communities seem to be due to switches and merges
between related communities. Overall, they are relatively stable over time,
and mostly seem to expand, pointing to an expansion of research, and pos-
sible intensification of scientific specialization.

This approach makes it possible for us to provide a more substantive
description of the evolution of the community structure. Fig. 6.5 provides
evidence that the field self-organizes into thematic groups in a process
of ongoing scientific specialization, net of possible disagreements within
these groups. This is a consequence of scientists citing papers they con-
sider relevant, regardless of possible disagreements. It seems less likely
that the groups detected are positional, consisting of scholars who mutu-
ally agree while disagreeing with other groups’ views. In absence of in-
formation about negative links, not much can be said with any certainty
about consensus or dissensus. It is possible that within thematic commu-
nities there is disagreement such that, once negative links are explicated,
they turn out to be further partitioned into positional communities.

6.2.3 A public debate

We now show for data wherein we can distinguish positive and negative
links how large the difference between community assignments can be
when ignoring this distinction. Our dataset consists of references between
authors in the debate about minority integration in the Netherlands. We
focus on longer articles published in two broadsheet newspapers (NRC
Handelsblad and De Volkskrant) in between the assassination of the populist
politician Pim Fortuyn (6 May 2002) and the assassination of film maker
Theo van Gogh (2 November 2004). We selected articles from the Lexis-
Nexis database through the key word “integration” in conjunction with
“foreigners”, “Muslims” or “minorities”. During this turbulent period in
Dutch political history there were 149 long (over 1000 words) articles on
integration.
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References to individuals (both Dutch and foreign, dead and alive) as
well as to institutions (like political parties) or think tanks were manually
coded by Uitermark (2012). In our 149 articles, the references were distin-
guished according to their tone: positive, neutral or negative. As a rule,
positive and negative codes were assigned only if references were unam-
biguous. References were coded at the level of paragraphs, so it was pos-
sible for one article to contain several references to the same author, with
each paragraph being coded according to the evaluation implicit or explicit
in the reference(s).

In total 1779 references by authors commenting on others were coded,
either as positive (318), neutral (930), or as negative (531) directed links.
Here we include only the positive and the negative links and we consider
only the largest component of the network, which has 323 authors. The link
weights between two authors were defined by subtracting the number of
negative references from the number of positive references.

First, we identify communities while assuming that all references are
positive. As a result, the network in Fig. 6.6 has a number of relatively
dense groups of authors referring to each other.

When we distinguish positive and negative links in Fig. 6.7, consis-
tent with the data, it turns out there are in fact two large communities,
each with quite different membership than any of the communities from
Fig. 6.6. There are many references between these two large communities
but they are mostly negative: the two communities clearly disagree, and
community membership now corresponds to a large extent to ideological
identification. The communities are positional rather than thematic, and
contention is a key mechanism of group formation in this field. The large
community on the left consists mostly of authors who argue against the
stigmatization of Islam and other minorities, while the large community
on the right contains a majority of authors who argue that mass migra-
tion and (radical) Islam present a threat to Western civilization and to the
Netherlands in particular.

The NMI score for Fig. 6.6 and 6.7 is 0.34, which is relatively low given
that many positively connected authors who were together in Fig. 6.6 stay
together in Fig. 6.7. Our key point here is that if one assumes all links to be
positive, a very different result is obtained than if negative links are expli-
cated. Once both positive and negative links are taken into account, then it
becomes possible to analyse contention. Moreover the number of edges be-
tween the two largest communities is quite substantial (mostly negative),
contrary to the assumption that there are few citations in between contend-
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Fig. 6.6 Thematic communities assuming ties to be positive

ing groups.
In conclusion, without distinguishing negative links explicitly, little can

be said about the contentious community structure, for which further re-
search is necessary. If anything, the data suggest that a key mechanism of
group formation is specialization into sub-fields, while it seems less likely
that the mechanism of contention, leading to rivalling camps, plays an im-
portant role.

We showed that incorporating negative links in the analysis can have
a substantial impact on the communities detected, even in fields where, as
is the case for science, interaction is highly civilized and the proportion of
negative references is low. So, in general, researchers have to explicate neg-
ative relations (criticism, repel, competition, or violence) when analysing
fields wherein conflict is a mechanism of group formation. Only then can
communities be detected validly, whatever method of detection is chosen.
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PART II
Social Balance & Reputation





7 Social balance

NEGATIVE links play a prominent role in many social scientific
fields, although most research has almost exclusively focused
on positive links. Ranging from stereotype formation (Wert and

Salovey, 2004; Greenwald, Banaji, Rudman et al., 2002), norm maintenance
(Friedkin, 2001) to social conflicts (Labianca, Brass and Gray, 1998) and
armed conflicts (Maoz, 2006), in all situations negative links play a piv-
otal, if not primal, role. Often they constitute the first organizing principle
in such networks, and sometimes the opposition between two contending
groups is even stronger then their internal cohesion. However, how and
why negative links form exactly is not completely clear. In this chapter we
will investigate the structure of negative (and positive) links, and in the
next chapter focus on their dynamics.

Although seemingly unrelated, negative links also play a natural role
in the evolution of cooperation. We assume that if a link is negative, people
do not cooperate, while if it is positive they do cooperate. Not everybody
necessarily cooperates with everybody, and it is in fact often advantageous
not to cooperate. At the same time, we do see a lot of cooperation in nature.
This has long baffled social scientists and biologists alike, and remains an
elusive problem. We will analyse the structure and dynamics of negative
links in the context of the evolution of cooperation in Chapter 9.

But first we will turn to the concept of social balance (Harary, 1953;
Cartwright and Harary, 1956; Davis, 1967; Cartwright and Harary, 1968,
1979), which we already briefly saw while discussing negative links in
community detection. We will discuss it in somewhat more detail than
before. Social balance can be seen as the first organizing principle of net-
works with negative links. The basic idea is that triads (cycles of length 3)
should be balanced: friends should think alike about a third person, while
enemies should disagree. We will see that if all triads are balanced, a com-
plete network can be split into two factions.



7 Social balance

The idea of social balance is often motivated from a theory known as
cognitive dissonance, which is a theory in psychology that dictates that dif-cognitive

dissonance ferent beliefs and actions should be in accord with each other (Festinger,
1957). That is, if you think that saving wildlife is an important issue,
yet you condone elephant hunting, this creates some friction, some dis-
sonance. Of course, not all beliefs should be in perfect accord with each
other, and some contradictory beliefs create more dissonance, while other
create less dissonance.

The first step it to extend this idea to another person. Consider that you
have some friend (or at least have that belief). Suppose that person, that
friend, has very different ideas than you. It is then argued that this would
induce some cognitive dissonance as well. After all, why should you be
friends with somebody who is completely different from you? So, in order
to reduce the amount of dissonance, two things can happen: either the
friendship declines or beliefs of the two friends converge. So, in general
we should expect most friends to think alike (at least to some extent).

The second step is now to consider a third person. If two friends are
expected to think alike, the same should hold for their opinion concerning
a third party. In particular, if somebody likes a third person, his friend is
expected to also like that person, and similarly so if somebody dislikes that
third person. A similar reasoning holds for two enemies. If somebody likes
a third person, their enemy is expected to dislike that person.

We can thus discern between two types of triads: balanced ones and
unbalanced ones, as illustrated in Fig. 7.1. Balanced triads are consistent
and do not induce any stress in terms of dissonant beliefs or behaviour.
Of course, if somebody is hated by a lot of people this will surely induce
stress, but it will not be cognitively dissonant. In fact, you might won-
der how somebody who is disliked that much thinks about himself, and
indeed such a situation also often induces a negative self-esteem, congru-
ent with cognitive dissonance theory (Bearman and Moody, 2004; Labianca
and Brass, 2006; Labianca, Brass and Gray, 1998; Lakey, Tardiff and Drew,
1994).

Unbalanced triads are believed to induce some stress due to cogni-
tive dissonance, thereby creating an incentive for changing the unbalanced
triad. For example, if Alice and Bob are good friends and Bob likes Eve,
but Alice doesn’t like her, this creates some tension. So, we might expect
either Bob to change his relationship to either Eve or Alice, or expect Eve
and Alice to become friends. In everyday life such situations might pop-up
for example when a couple breaks up: people may have befriended both
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Balanced triads

partners, but when the partners break up, their positive link is flipped to
a negative link, thereby creating an unbalanced triad. This unbalanced sit-
uations is then often resolved by only staying friends with one of the two
partners, or “choosing sides” so to speak.

Although the motivation comes from cognitive dissonance theory, the
theory of social balance has been formalized to quite some extent without
reference to cognitive dissonance. The focus is in first instance on triads
and complete graphs that can be split into (at most) two factions. Simi-
lar definitions can also be provided on sparse graphs, and some weaker
definition can be given such that a graph can be split into more factions.

7.1 Balanced triads

The notion of social balance can be formalized by looking at triads (cycles
of length 3) (Harary, 1953). In general, we define a signed graph as G = signed graph

(V, E−, E+) where E− ⊆ V × V are the negative links and E+ ⊆ V × V E±

the positive links and E− ∩ E+ = ∅, so that no link is both positive and
negative. Furthermore, we will restrict ourselves to undirected graphs. In
this case, the definition of undirected is not immediately straightforward,
but in this case we mean that if there is an edge (i, j) ∈ E+ ∪ E− then also
( j, i) ∈ E+ ∪ E−. So, the signs may in principle be different, but if there is
a link in one direction, there must also be a link in the opposite direction.
The adjacency matrices A+ and A− are then defined accordingly, so that
A+

i j = 1 whenever (i, j) ∈ E+ and zero otherwise, and similarly A−i j = 1
if (i, j) ∈ E− and zero otherwise. The signed adjacency matrix will be
denoted by Ã = A+ − A−. In this section we will work exclusively with
the signed adjacency matrix, so that we will use A = Ã in order to avoid
cluttering of the notation. Hence, Ã = A can be also defined as

Ai j =


−1 if (i, j) ∈ E−,

1 if (i, j) ∈ E+,

0 otherwise.

(7.1)

Notice that in principle this matrix need not be symmetric, although it will
follow that for socially balanced networks it is (and so undirected and sign
symmetric is the same for socially balanced graphs). Nonetheless, because
the network is undirected, we do have that |A| = |A>|. Social balanced
graphs are then also sign symmetric so that we obtain A = A>. This can

155



7 Social balance

be relatively straightforwardly extended to weighted graphs, but for those
we are still foremost concerned with their sign, which then simply reduces
to the case under consideration.

In this subsection we will first concentrate on complete graphs (includ-
ing self-loops), such that there is an edge for all pairs of nodes. That is
E+ ∪ E− = V ×V and |Ai j| = 1 for all i, j. We will define a balanced triad
as a cycle of three nodes, for which the product of the signs of the edges
are positive.social balance

Definition 7.1. A triad i, j, k is called (socially) balanced whenevertriad

Ai j A jk Aki = 1. (7.2)

A complete signed graph G is (socially) balanced whenever all triads are balanced.

We will sometimes also state that some real matrix X is socially bal-
anced, which is taken to mean formally that sgn(X) is socially balanced.
Let us first prove that balanced complete networks are symmetric.

Lemma 7.2. A socially balanced complete network is sign symmetric.

Proof. First observe that the triad Aii Aii Aii = 1 is balanced, so that Aii = 1.
Then also Aii Aik Aki = Aik Aki = 1 by social balance, so that Aik = Aki.

Notice that the self-loop Aii is pivotal here. This could be interpreted as
self-esteem (what does i think of i?), and is always positive in a balanced
network. If self-loops are not included, the signs might be of opposing sign
if we only consider triads. However, in the next subsection we will see that
the more general definition will preclude this case.

If a complete network is socially balanced, we can split such a graph
in (at most) two factions, such that the links between the two factions are
negative and the links within a faction are positive.

Definition 7.3. Let G = (V, E+, E−) be a signed graph, then a faction F ⊂ V is afaction

subset of nodes such that

(u, v) /∈ E− for u, v ∈ F,

(u, v) /∈ E+ for u ∈ F, v ∈ V \ F.

A partition into factions is then a set of of factions F = {F1, F2, . . . , Fq}
such that V =

⋃q
i=1 Fi and Fi ∪ Fj = ∅ for i 6= j, similar to the partition into
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Balanced triads

Balanced

Unbalanced

Two Factions

Fig. 7.1 Balanced triads in complete network

communities (see p. 23). Notice that a partition into factions corresponds
to a block partition of a matrix (up to reordering) as

A =


+ − · · · −
− + · · · −
... · · · . . .

...
− · · · − +


where + denotes a block of only non-negative entries (i.e. 0 or 1) and− de-
notes a block of non-positive entries (i.e. 0 or −1). For a socially balanced
signed graph, this partition is limited to at most two factions (this restric-
tion is not present for weak social balance, see section 7.3). This condition
can also be expressed in terms of the spectrum. This idea is illustrated in
Fig. 7.1.

Theorem 7.4. Let G = (V, E+E,− ) be a complete signed graph with symmetric
adjacency matrix A. Then the following are equivalent:

1. G is socially balanced,

2. G can be split in at most two factions,

3. A = uu> where |ui| = 1.

4. λ1(A) = n, λi(A) = 0 for i ≥ 2.

Proof. Let us first prove that (1) ⇒ (2). Let us take a node v ∈ V, and set
F1 = v ∪ N+(v) where N+(v) = {u|(u, v) ∈ E+} are the positive neigh-
bours of v, and set F2 = V \ F1. Suppose (u, v) ∈ E−. Then if u and v are in
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7 Social balance

the same component they have a common positive neighbour w, and hence
the triangle uvw has negative sign, contradicting social balance. Hence all
negative links are between F1 and F2 and all positive links within F1 and
F2. Indeed, this corresponds to two factions (one which might be empty).
Now let us prove (2) ⇒ (3). Notice that up to relabelling the split in at
most two factions corresponds to

A =

(
+ −
− +

)
= (+ | −)

(
+

−

)
. (7.3)

where each + and − corresponds to a block of only 1 and −1 respectively.
So with u = (+ | −) this gives the requested property. Then (3) ⇒ (4) is
almost immediate. Since A = uu> we obtain that Au = uu>u = un so that
λ1(A) = n. Since A is a rank one matrix λi(A) = 0 for i ≥ 2. Finally, let us
prove (4) ⇒ (1). Since A is a rank one matrix we can write A = uu> for
some u, so that Ai j = uiu j and u2

i = 1. Then Ai j A jk Aki = uiu j u juk ukui =

1.

Notice that if A = uu> then A2 = nuu> so that all powers of A are also
socially balanced (or strictly speaking sgn(A2) is balanced).

This theorem completely describes socially balanced complete signed
graphs, and their structure is very simple. Notice that the eigenvalue de-
composition of A = uu> corresponds exactly to the minimization of the
frustration provided in section 5.1.1 on p. 116.

7.2 Balanced cycles

If we analyse signed graphs that are not complete, the definition of bal-
anced triads is no longer satisfactory. After all, if a link is missing, such that
Ai j = 0, is that triad involving the link (i j) then not balanced? Suppose we
say we only take into account triads which are complete (all three links are
present). Then there are plenty examples of signed graphs such that each
triad is balanced, but that it no longer neatly splits into two factions. So,
for general signed graphs a somewhat different definition of social balance
is appropriate (Harary, 1953). However, it is consistent with the case of
complete signed graphs in the previous section, and it emerges as a special
case.

The focus in this case is on cycles, and we can define a balanced cycle
as follows.
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Balanced cycles

Definition 7.5. Let G = (V, E+, E−) be a signed graph and A the signed ad-
jacency matrix. Let C = v1v2 . . . vkv1 be a cycle consisting of nodes vi with sign of cycle

vk+1 = v1. Then the cycle C is called balanced whenever

sgn(C) :=
k

∏
i=1

Avivi+1 = 1. (7.4)

A signed graph G is called balanced if all its cycles C are balanced.

We will also call balanced cycles positive cycles, and unbalanced cycles
negative cycles. Furthermore, we can define the sign of a path.

Definition 7.6. Let P = v1v2 . . . vk be a path in a signed graph G with signed
adjacency matrix A. The sign of the path P is then defined as sign of path

sgn(P) :=
k−1

∏
i=1

Avivi+1 . (7.5)

We then speak of a positive or negative path. Clearly a positive cycle
consists of two paths of the same sign. The interpretation of balanced cy-
cles remains similar as before. Consider for example a cycle of length 4
with a single negative link between node u and v. Then on the one hand
there is a complete positive path between u and v (of length 3), while on
the other hand there is a negative link between u and v. If we extend the
previous idea that a friend of a friend is a friend to the third degree, u and
v should be friends, not enemies. Hence, such a cycle should be unbal-
anced, and indeed its sign is −1. Now consider again a cycle of length 4
between u and v but now with one path consisting of two positive links
and the other one of two negative links. Then u is the friend of a friend on
the one hand, while it is the enemy of an enemy on the other hand. This is
consistent with each other, and so the cycle is balanced.

It is immediately clear that a balanced undirected network should be
sign-symmetric, since also the cycles of length 2 must be positive. More-
over, if there are any self-loops they need to be positive (them being cycles
of length 1), similar to the previous section.

Lemma 7.7. A balanced signed graph G is sign symmetric A = A> and any self-
loop is positive.

From here onwards a socially balanced network is hence sign symmet-
ric. Notice that this is consistent with the triads on a complete graph, but
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7 Social balance

v1v2

vr−1 vr
vr+1

vk

Fig. 7.2 Cycle with chord

that we now also look to cycles of a different length. Notice there can be
many cycles (particularly for complete graphs). However, it is possible to
prove that if all chordless cycles (of size at least 3) are balanced, then all
cycles are balanced. A chord is an edge between two vertices of a cycle, seechord

also Fig. 7.2.

Lemma 7.8. Let C = v1v2 . . . vkv1 be a cycle with a chord between nodes v1
and vr in C (which by the previous lemma is sign symmetric). Then let C1 =

v1v2 . . . vrv1 and C2 = v1vk−1 . . . vrv1 be the induced subcycles. Then C is
balanced if C1 and C2 are balanced

Proof. See Fig. 7.2 for an illustration. Let s1 = sgn(C1) and s2 = sgn(C2) be
the sign of the cycles C1 and C2. By assumption we have that s1 = s2 = 1,
since they are balanced. Then the path from v1 to vr in C1 and the path
from v1 to vr in C2 must both have the same sign, since both cycle share the
common edge (v1, vr). Since the signs of both paths from v1 to vr are the
same, the cycle C must have positive sign.

The inverse is not true however. A cycle may contain subcycles of neg-
ative sign. However, clearly, if all chordless cycles (of size at least 3) have
positive sign, all cycles have positive sign, and so the network is balanced.
Moreover, if a network is complete, the only chordless cycles are triads.
Hence, a complete network is socially balanced if and only if all triads are
balanced, so that indeed this more general definition is consistent with our
discussion in the previous section.

Using this definition, we can prove that a balanced signed graph can be
split into (at most) two factions. However, the eigenvalues and eigenvector
might be more complicated because of the zeros in the signed adjacency
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Balanced cycles

matrix. Nonetheless, the largest eigenvector provides the information on
the two factions (as was also shown in section 5.1.1 on p. 116).

Theorem 7.9. Let G = (V, E+, E−) be a connected signed graph and A the signed
adjacency matrix. Then G is balanced if and only if G can be split into (at most)
two factions.

Proof. First assume G is balanced. Then pick a random v ∈ V and set F1 =

{u|sgn(u− v path) = 1}, i.e. all the nodes that can be reached through a
positive path. Define F2 = V \ F1. Let e = (u, w) ∈ E−. By construction
E−(F1) = ∅ since it would otherwise contradict balance. Suppose now that
e ∈ E−(F2). Both the u− v path and the w− v path is negative (otherwise
u and w would be in F1). There is then a u − w path that is positive (the
product of the two negative paths is positive), and (u, w) ∈ E− so that
there is a negative cycle, which contradicts balance. Hence, all negative
edges lie between F1 and F2 so that any positive edges lie within F1 and F2,
corresponding to two factions (one of which may be empty). Vice-versa,
suppose G can be decomposed into two factions F1 and F2. Let C be a
cycle. If C is contained within F1 or F2 it is completely positive, so that
sgn(C) = 1. So, suppose C has some node u ∈ F1 and v ∈ F2. Then by
definition of factions, both u− v paths are negative, and so the cycle C is
positive. Hence, all cycles are balanced, and so G is balanced.

Whether social balance holds can be easily seen from the dominant
eigenvector.

Theorem 7.10. Let G be a connected signed graph and let u be the dominant
eigenvector of the signed adjacency matrix A. Then G is balanced if and only
if F1 = {i ∈ V|ui > 0} and F2 = V \ F1 defines the split into two partitions.

Proof. If the split defines correct factions, then obviously G is balanced by
the previous theorem. The other way around, suppose G is balanced. Then
A = AT . Let u be the dominant eigenvector. Suppose that ui Ai ju j < 0 for
some i, j. Then let x be another vector with |xi| = |ui| for all i and xi Ai jx j >
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7 Social balance

0 for all i, j, which is possible by social balance of G. Then ‖x‖ = ‖u‖ and

u>Au = ∑
i j

ui Ai ju j (7.6)

< ∑
i j
|ui Ai ju j| (7.7)

= ∑
i j
|xi Ai jx j| (7.8)

= ∑
i j

xi Ai jx j = x>Ax, (7.9)

which contradicts the fact that u is the dominant eigenvector. Hence, we
obtain that ui Ai ju j ≥ 0 for all i, j and it defines a correct partition.

Furthermore, if a signed adjacency matrix A is socially balanced, then
so is A2 (and by extension Ak for any k).

Theorem 7.11. Let A be a balanced signed adjacency matrix. Then A2 is balanced.

Proof. Let A be balanced. Suppose that i and j are in the same faction. Then
all paths between i and j are positive, so that in particular ∑k Aik Ak j ≥ 0.
Now suppose that i and j are in a different faction, then all paths between
i and j are negative, so that ∑k Aik Ak j ≤ 0. Hence, A2 is also balanced.

Notice that the inverse does not hold, since the number of balanced
cycles may outweigh the number of unbalanced cycles, so that A2 might be
balanced, while A is not. Consider for example a graph with the following
sign structure

A =

(− +

+ −

)
.

Then A2 is indeed balanced, while A is not. Finally, it is obvious that any
subgraph of a balanced graph is balanced itself.

7.3 Weak social balance

In the previous sections, any cycle with an odd number of negative links is
called unbalanced. However, if you consider to split such a cycle into fac-
tions, there is not necessarily a problem. Consider for example the simplest
case, a triad with three negative links. Although this triad is clearly not bal-
anced (the cycle is negative), it can be easily split into three factions: each
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Weak social balance

node constitutes its own faction. This is obviously a correct partitioning:
there are only negative links between factions and positive links within
factions (none in this case). Is it possible to characterize networks that can
be split into factions in a simple way? The answer is yes, and cycles are
still key (Cartwright and Harary, 1968; Davis, 1967).

Consider as an example a cycle with a single negative link between
node u and v. On the one hand node u and v should be clustered in the
same faction since they are joined by an all positive path. On the other
hand, node u and v should be clustered in a different faction, since they
are joined by a negative path. This simple condition is in fact sufficient to
characterize “clusterable” signed graphs.

Definition 7.12. A cycle C = v1v2 . . . vkv1 is termed weakly balanced if it con- weak social
balance

tains not exactly a single negative link. A signed graph G is called weakly balanced
if all its cycles C are weakly balanced.

We will also refer to the social balance defined previously as “strongly
balanced”. Any graph that is strongly balanced is then obviously also
weakly balanced. A cycle that contains an even number of edges (has a
positive sign) surely won’t have exactly a single negative link. The in-
verse is not true however, the triad with three negative link being a prime
counter example. This explains also why the two different definition might
be called strongly and weakly balanced: strong balance is more constrained
and implies weak balance, but not vice-versa. Notice that weakly balanced
graphs must also be sign-symmetric (the cycle of length 2 must not have
exactly one negative link).

Similar as before, we can focus on chordless cycles.

Lemma 7.13. Let C = v1v2 . . . vkv1 be a cycle with a chord between nodes v1 and
vr in C. Then let C1 = v1v2 . . . vrv1 and C2 = v1vk−1 . . . vrv1 be the induced
subcycles. Then C is weakly balanced if C1 and C2 are weakly balanced.

Proof. Both C1 and C2 do not contain a single negative link. Suppose that
the link v1vr is not a negative link, then the only negative links of C1 and
C2 also appear in C so that C is weakly balanced. Suppose that v1vr is a
negative link. Then both C1 and C2 should contain at least one negative
link that also appears in C so that C again is weakly balanced.

The inverse is not true, which can be readily seen by considering an all-
positive cycle with a single negative chord. The all-positive cycle clearly is
weakly balanced, but the induced subcycles are not.
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7 Social balance

Theorem 7.14. Let G be a signed graph. Then G is weakly balanced if and only if
it can be split into factions F = {F1, F2, . . . , Fq}.

Proof. Suppose G is weakly balanced. Let G+ = (V, E+) be the positive
part of the signed graph, and let the factions be defined by the connected
components of G+. Suppose that (u, v) ∈ E−. Then u and v are never inconnected

components
the same positive component since there would then be an all positive path
between u and v, contradicting weak balance. Hence, this corresponds to a
correct split into factions. Vice versa, suppose G is split into factions. Then
any cycle clearly cannot contain exactly a single negative link, since there
would then be a negative link within a faction, contradicting its definition.
Hence G is weakly balanced.

For a complete signed graph, the condition for it to be split into factions
is even simpler.

Corollary 7.15. Let G be a complete signed graph. Then G can be split into factions
if and only if the triad composed of a single negative link is not present.

Proof. By lemma 7.13 we can look only to triads, and by the previous theo-
rem these triads should not contain a single negative link.

So, for a complete signed graph, there is only a single forbidden triangle
for it to be weakly balanced: the triad with a single negative link. If in
addition the triad with three negative links is a forbidden subgraph, it is
strongly balanced.

The characterization of a signed graph that can be partitioned into fac-
tions is rather simple: the forbidden subgraphs are cycles with a single
negative link. On the contrary, determining the minimum number of fac-
tions necessary is less trivial. To see this, let us constructs a contracted
graph G∗ = (V, E) as follows. For every positive connected component
(i.e. the components of G+) we define a node v ∈ V(G∗). Whenever there
is a negative link between two connected components in G represented by
two nodes u, v ∈ V(G∗) we create a link (u, v) ∈ E(G∗). Obviously, the
graph G is weakly balanced, if and only there is no self-loop in G∗, corre-
sponding to a cycle with a single negative link. After all, such a self-loop
would imply that two nodes in a positive component would have a nega-
tive link, so that there must be a cycle with a single negative link.

Definition 7.16. Let G be a weakly balanced signed graph, so that it can be parti-
tioned into factions F = {F1, . . . , Fq}. We denote by χ(G) the minimum number
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of factions q = |F | necessary to partition the signed graph G into factions, and
by Ω(G) the maximum number of factions, or

χ(G) = min |F |
Ω(G) = max |F |

The correspondence with the chromatic number χ(G) (the minimum chromatic number

number of colours necessary to colour a graph) is intentional, and there is
a natural correspondence between the two. The upper bound Ω(G) is eas-
ily determined, and is provided by the number of nodes in G∗, i.e. by the
number of positive components of G. Although for G∗ this is the same as
usual for any valid colouring, but for G the maximal number of colours is
more restricted than usual in a colouring. The lower bound χ(G) can also
be simply expressed by G∗ and we have that χ(G) = χ(G∗). So, the min-
imum number of factions necessary to partition a balanced signed graph
G is equal to the chromatic number of the contracted graph G∗. The corre-
spondence between a colouring problem and the partition into factions is
not exact however. A graph can always be coloured, and always possesses
a correct colouring. A signed graph however can not always be coloured,
that is, partitioned into factions, since only weakly balanced graphs can be
correctly partitioned.

Although the problem of determining the minimum number of fac-
tions reduces to determining the chromatic number χ(G∗) of the contracted
graph G∗, this is still not easily determined or characterized. Two well
known bounds exist and ω(G∗) ≤ χ(G∗) ≤ ∆(G∗) + 1 where ω(G∗) is
the largest clique in G∗ and ∆(G∗) the maximum degree. In general, it is clique

∆ maximum
degreeNP-hard to determine χ(G∗), and no simple characterization is known to

exist.
An easy case however is determining if χ(G∗) = 2 in which case G∗

is simple bipartite. There is a simple characterization of bipartite graphs, bipartite

namely that they do not possess any odd-length cycles. This corresponds
exactly to not having cycles of negative sign in the signed graph G (an odd
number of negative links), and so corresponds to strong balance.

For a strongly balanced signed adjacency matrix A, we know that A2 is
also balanced. This is mainly due to the fact that products of any cycles are
positive, so that any paths have signs consistent with social balance. For
weak balance this no longer holds. For sparse graphs this is immediately
clear, since not all links need to change in the same way when taking A2.

Even for full graphs this does not hold however, which might not be
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readily clear. As a small counter example, consider three factions of size ni,
n j and nk (there might be other factions still) in a weakly balanced complete
graph of size n. Then A2 will have negative links between factions i and
j yet have positive links between factions i and k and j and k, and so will
no longer be socially balanced (neither weakly nor strongly), under the
following conditions:

ni + n j >
n
2

,

ni + nk <
n
2

,

n j + nk <
n
2

.

In terms of common enemies, these inequalities are quite intuitive. It im-
plies that both factions i and k and factions j and k have relatively many
common enemies (i.e. ni + nk < n/2 and n j + nk < n/2), yet factions i
and j don’t have that many common enemies (i.e. ni + n j > n/2). This
results in an A2 with (ik) and ( jk) being positive links, whereas (i j) is a
negative link. By corollary 7.15 it is not weakly balanced (nor is it strongly
balanced).

Summarizing, we have the following. Strongly balanced graphs

• have cycles of positive sign, and

• can be split into (at most) two factions,

whereas weakly balanced graphs,

• have cycles with not exactly one negative link, and

• can be split into factions.

Furthermore, social balance implies weak balance, but not vice-versa.
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THERE are two big questions associated with social balance. The
first is how to detect whether a network can be split into factions.
We already addressed this in chapter 5. The second question con-

cerns the emergence (and stability) of social balance. If indeed social bal-
ance should emerge from some process such as cognitive dissonance, can
we model such a process and show that social balance results? In other
words, what model can potentially lead to social balance? And under what
conditions will it lead to social balance? In this chapter we will address
these questions.

We will restrict ourselves to complete graphs and strong social balance.
Of course, it would be very interesting to study models on sparse graphs
and relate them to weak social balance. There do seem to be possibilities
for addressing both issues in the modelling, yet the analysis becomes much
more difficult, and is reserved for future work.

8.1 Discrete models

One of the first suggested models for social balance was discrete in nature
(Antal, Krapivsky and Redner, 2005). All links simply have a sign + or
− (or +1 and −1), and the signs can only flip from positive to negative,
or the other way around. Starting from some initial condition, the idea
is then that if we flip edges long enough social balance may emerge. Of
course, if we simply randomly flip links, this is unlikely to happen. So,
these flips should follow some rules, which should obviously be related to
social balance.

As stated, we will limit ourselves to complete graphs (without self-
loops), so that we can focus on triads only. We will also assume that the
graphs are undirected and sign symmetric, so that there are simply two bal-
anced triads (those with 0 or 2 negative links), and two unbalanced triads
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(those with 1 or 3 negative links). Indeed, by lemma 7.8 we should only
concern ourselves with triads, and it is not necessary to focus on other
cycles. This makes it significantly easier to analyse models for complete
graphs than for general graphs. Moreover, we will only analyse the mean-
field behaviour, which was shown to accurately predict simulated results
(Antal, Krapivsky and Redner, 2005).

Now the model goes as follows. We randomly choose a triad and if
the triad is unbalanced, we will change one of its links so that is becomes
balanced. However, it might be that some other triads then become unbal-
anced. So it is not immediately clear whether such a process will lead to
social balance. There are then two choices available: we simple change one
of the links randomly without concern for the other triads, known as Local
Triad Dynamics (LTD), and one in which we only update if it improves the
overall number of balanced triads, known as Constrained Triad Dynamics
(CTD).

8.1.1 Local triad dynamics

Let us first detail the Local Triad Dynamics (LTD) model. Let us denoteLocal Triad
Dynamics

by 4k a triad with k negative links, so that 40 and 42 are balanced, and
41 and 43 are unbalanced. Whenever we choose a random triad, which
is unbalanced, we flip one of its links, such that with probability p a triad
changes from 41 → 40, and with probability 1− p a triad changes from
41 → 42. Obviously, with a single flip a triad43 can only change to42,
since it has 3 negative links. We will first analyse how this model behaves
in the limit of large n number of nodes.

Let us denote by T = (n
3) the number of triads in a network, and by

Tk the number of triads with k negative links, and define the proportion of
triads with k negative links tk = TK/T. Furthermore, denote by m+ and
m− the number of positive and negative links. Then obviously,

m+ =
1

n− 2 ∑
k
(3− k)Tk m− =

1
n− 2 ∑

k
kTk,

since each4k triad contains k negative links, and each link appears in n− 2
triads. The density of positive links is then ρ = m+/m = ∑k(3 − k)tk/3,
and obviously the density of negative links is 1− ρ = m−/m = ∑k ktk/3.

Finally, let us write by T+
k the average number of positive links that

are attached to a 4k triad, which can be written as T+
k = (3 − k)Tk/m+,

because each 4k triad has 3− k positive links, and there are m+ positive
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links in total. The probability that a positive link is attached to a 4k triad
is then

t+k =
T+

k
N − 2

=
(3− k)tk

∑l(3− l)ltl
.

Similarly we can define T−k as the average number of positive links at-
tached to a4k triad, which is T−k = kTk/m− and

t−k =
T−k

N − 2
=

ktk

∑l ltl

denotes again the probability a negative link is attached to a triad with k
triads.

Suppose we have chosen an unbalanced triad41 with a single negative
link at random. The probability of selecting such a triad is t1. The proba-
bility that a negative link changes to a positive one is p, since 41 → 40
with probability p, while the probability that a positive link changes to a
negative one is 1 − p. Suppose that 41 → 40 and that a negative link
switched sign. The probability that a negative link is attached to a4k triad
is t−k and these triads also change. So, in this case, the proportion of triads
of type41 changes as

t′1 = t1 − t−1 + t−2 − 1/T.

Since 1/T → 0 for large n, we ignore this contribution.

We can examine the other cases similarly. In general then, the probabil-
ity a link flips from positive to negative can be calculated as π+ = (1− p)t1
since the probability to select a 41 triad is t1, and the flip 41 → 40 hap-
pens with probability 1− p. The probability a link flips from negative to
positive is then π− = pt1 + t3 since 41 → 40 happens with probability
p, and if we have selected a triad43 (which happens with probability t3),
it will always switch from negative to positive (as 43 does not have pos-
itive links). We approximate the original dynamics by a continuous time
differential equation.

Let us first look how the proportion of 40 changes. With probability
π− a link changes from negative to positive. The probability a negative
link is attached to a triad of type41 is t−1 , so the probability that41 → 40
is π−t−1 . With probability π+ a link changes from positive to negative, and
the probability a positive link is attached to a triad of type 40 is t+0 . So
with probability π+t+0 a triad 40 → 41. Similarly working out the other
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possibilities yields

ṫ0 = π−t−1 − π+t+0 , (8.1a)

ṫ1 = π+t+0 + π−t−2 − π−t−1 − π+t+1 , (8.1b)

ṫ2 = π+t+1 + π−t−3 − π−t−2 − π+t+2 , (8.1c)

ṫ3 = π+t+2 − π−t−3 . (8.1d)

Let us analyse the stationary states of system (8.1). First observe that
in a stationary state, the proportion of triads remains constant, so that the
proportion of positive links ρ should also remain constant. Hence ρ̇ =

π+ − π− = 0 and π+ = π−. Using π+ = π−, we obtain that t+0 = t−1 ,
t+1 = t−2 and t+2 = t−3 . By forming products t+0 t−2 = t+1 t−1 and so forth,
we obtain 3t0t2 = t2

1 and 3t1t3 = t2
2. Furthermore, because π+ = π− we

obtain that (1− 2p)t1 = t3. We then obtain

t3 = q3t0,

t2 = 3q2t0,

t1 = 3qt0,

where q =
√

3(1− 2p) for p < 1/2 and q = 0 for p ≥ 1/2. With the
normalization ∑k tk = 1 we arrive at

tk =

(
3
k

)
ρ3−k
∗ (1− ρ∗)k, (8.2)

where

ρ∗ =

{
1

q+1 for p < 1/2

1 for p ≥ 1/2
(8.3)

is the stationary proportion of friendly links ρ.

Notice that the proportion of triads are distributed according to a sim-
ple binomial distribution for p < 1/2. Hence, for infinitely large networks,binomial

distribution
this model converges to a distribution of triads and not to social balance for
p < 1/2. Notice that for finite size networks it will necessarily converge to
a socially balanced state, since the model runs until there are no longer any
unbalanced triads. Since a balanced state is reached with non-zero proba-
bility, we are sure that after waiting long enough, the model should reach
social balance. However, the analysis of large n shows that the model may
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spend much time in a quasi-stationary state around the binomial distribu-
tion.

For p > 1/2 the model will always converge to social balance, but con-
sisting only of a single faction, and all links will be positive. Simulations
also show this transition around p ≈ 1/2.

Obtaining non trivial social balance (i.e. not consisting of a single fac-
tion) using Local Triad Dynamics (LTD) is therefore not straightforward.
Although for a finite size, it will always end up in a socially balanced state
in the end, this may take a very long time (about en2

from simulations (An-
tal, Krapivsky and Redner, 2005)), and the system is expected to spend
much time in a quasi-stationary state around an uncorrelated distribution
of triads. Perhaps the Constrained Triad Dynamics (CTD) works better in
this regard, since it only flips signs if it improves social balance. Hence, so-
cial balance can only increase in CTD. We will now investigate that model
to some extent

8.1.2 Constrained triad dynamics

Because in the model using Constrained Triad Dynamics (CTD) the up- Constrained Triad
Dynamics

dates depend on whether a specific link improves social balance or not, it
is rather difficult to model its dynamics, also in the limit of large n. Instead,
the focus here is on so-called jammed states: configurations of positive and
negative links such that no sign can be flipped in order to improve social
balance. Hence, the CTD becomes stuck in such a local maximum, as it has
no way of changing any link. Nonetheless, it was found that, even though
these jammed states exists, the dynamics often still converge to social bal-
ance, without being stuck in a jammed stated. Moreover, it does so more
quickly then LTD.

We will discern two types of jammed states, following (Marvel, Strogatz
and Kleinberg, 2009), strict, and weak jammed states. First let us define the
energy U of a configuration.

Definition 8.1. Let A be a complete signed adjacency network (without self loops).
We then define the energy as

U(A) =
1
(n

3)
∑
i jk

Ai j A jk Aki =
1
(n

3)
Tr A3.

This notion of energy simply counts how many triads are balanced (so
have a positive sign) compared to the total number of triads (n

3). Clearly in
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balanced networks all triads have positive sign, and so U = 1. A network
that consists only of negative links clearly has U = −1. We can now define
strict and weak jammed states.

Definition 8.2. Let A be a complete signed adjacency network. Let A′i j be the
signed adjacency matrix with sign A′i j = −Ai j flipped for link i j. We call A a
strict jammed stated whenever A is unbalanced and for all i, j, we have U(A) >

U(A′) and a weak jammed state if U(A) ≥ U(A′).

Notice that this is equivalent to saying that each edge i j must have

Ai j ∑
k

A jk Aki ≥ −Ai j ∑
k

A jk Aki . (8.4)

since otherwise flipping i j would improve the energy U. This is equiva-
lent to saying that more than half of the triads in which the i j participates
should be balanced. It can then be easily seen that no jammed state can
have U < 0

Lemma 8.3. Let A be a jammed state. Then U(A) ≥ 0.

Proof. For all edges i j we have that

Ai j ∑
k

A jk Aki ≥ 0,

otherwise Ai j ∑k A jk Aki ≥ −Ai j ∑k A jk Aki and flipping i j would improve
U. Hence

U(A) =
1
(n

3)
∑
i jk

Ai j A jk Ak j (8.5)

=
1
(n

3)
∑
i j

Ai j ∑
k

A jk Ak j ≥ 0. (8.6)

Notice that hence also Tr(A) ≥ 0 for jammed states. Hence, when look-
ing for jammed states, we know that if U(A) < 0 the state is definitely not
jammed.

Strict jammed states only exist for n = 9 and n ≥ 11 and jammed states
only exist for n = 6 or n ≥ 8, we will only show the former. For that we
first need the following observation.
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Lemma 8.4. Let T1 = (i, j, k) be an unbalanced triad and T2 = (i, v, k) be a
balanced triad. Then either T3 = (i, j, v) or T4 = ( j, v, k) is unbalanced.

Proof.

sgnT3sgnT4 = Ai j A jv Avi A jv Avk Ak j

= sgnT1sgnT2 = −1.

Theorem 8.5. Strict jammed states only exist for n = 9 and n ≥ 11.

Proof. Let A be a jammed state of n = 2r an even number of nodes with
inbalanced triad (i, j, k). Let (i, k, vs) be a balanced triad, of which at least
q ≥ r of the 2r − 2 triads are balanced (otherwise we could flip the sign
of (i, k)). By the previous lemma, for each vs either (i, j, vs) or ( j, vs, k) is
unbalanced. Denote by x the number of times (i, j, vs) is unbalanced, and
by y the number of times y is unbalanced. Then x + y = q. Since there
can be at most r triads unbalanced for the edge (i, j) (otherwise we could
flip its sign), we also have that x + 1 ≤ r− 2. Similarly, y + 1 ≤ r− 2, and
hence x + y + 2 ≤ 2r− 4 or r ≥ 6 so that n ≤ 12. For n = 2r + 1 an odd
number of nodes we obtain similarly n ≤ 9.

Furthermore, it can be proven that if the positive graph G+ is a Payley
graph, and the remaining edges are negative, it is a jammed state (Marvel,
Strogatz and Kleinberg, 2009).

We can hence conclude that the CTD does not necessarily converge to-
wards a socially balanced state, because of these jammed states. Nonethe-
less, it was observed by simulations that the probability to get stuck in a
jammed state approaches 0 for large n.

8.2 Continuous time squared model

As shown in the previous section, the discrete model shows some diffi-
culties in attaining social balance. Using local triad dynamics, the system
spends a large amount of time in a quasi stationary state in which the triad
densities are uncorrelated. Using constrained triad dynamics, the system
might be stuck in jammed states. It was suggested that by using continu-
ous time dynamics, one would obtain a model that would always converge
to social balance (Kulakowski, Gawronski and Gronek, 2005).
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The suggested model has the following form. We denote by Xi j ∈ R the
relationship between i and j, such that when Xi j < 0 the two nodes i and j
are enemies, and if Xi j > 0 the two are friends. For simplicity, we assume a
complete graph, including self-loops, so that the matrix X is complete. The
relationships are assumed to change according to

Ẋi j = ∑
k

XikXk j or Ẋ = X2, (8.7)

where Ẋ represents the time derivative. The idea behind this model is that
reputations are adjusted based on the outcome of a particular gossiping
process. More specifically, suppose that Bob (individual i) wants to revise
his opinion about John (individual j). Bob then asks everybody else in the
network what they think of John. If one such opinion Xk j has the same
sign as the opinion Bob has about his gossiping partner, i.e. as Xik, then
Bob will be increase his opinion about John. But if these opinions differ in
sign, then Bob will decrease his opinion about John.

The fundamental question is whether or not the solutions of Eq. (8.7)
evolve towards a state which corresponds to a balanced network. As usual,
we are only interested in the signs of the links, not the weights themselves.
This model has the tendency to blow-up, as we will see, and so we normal-
ize in order to facilitate the analysis, and we study

lim
t→t∗

X(t)
|X(t)|F

, (8.8)

where |X|F =
√

Tr XX> denotes the Frobenius norm. The Frobenius normFrobenius norm

is unitarily invariant so that |UXU>|F = |X|F for a unitary matrix U (i.e.unitarily invariant

UU> = I with I the identity). If this limit is socially balanced, the system
attains a socially balanced state. Recall from theorem 7.4 that X is balanced
if and only X = uv> for some u and v such that uivi > 0. Hence, X(t) will
be balanced if and only if

lim
t→t∗

X(t)
|X(t)|F

= uv> (8.9)

for some u and v with uivi > 0. In particular, if u = v then X(t) is balanced.
Notice that if u 6= v then only the weights can be different, but that the
signs must be the same. Hence, we could also say that X(t) is balanced if
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and only if

lim
t→t∗

sgn
X(t)
|X(t)|F

= uu>. (8.10)

It will be convenient to consider the decomposition of X in a symmetric
and skew-symmetric part, X = S + A with S = S> and A = −A>. The skew-symmetric

matrixsymmetric and anti-symmetric part can be uniquely defined as

S =
X + X>

2
, A =

X− X>

2
. (8.11)

Notice that 〈S, A〉 = Tr SA> = − Tr SA> = 0, so that A ⊥ S. We denote by
S and A the set of symmetric and skew-symmetric matrices respectively.
Furthermore, we denote by In the n× n identity matrix, and by Jn a specific
skew symmetric matrix:

Jn =

(
0 In/2
−In/2 0

)
, n even. (8.12)

Now let us look under what conditions social balance is attained.

Normal initial condition

We start by defining

N = {X ∈ Rn×n|XX> = X>X},

the set of real, normal matrices . Notice that ∂XX>
∂t = ∂X>X

∂t if X(0) ∈ N normal matrix

so that the set N is invariant for Ẋ = X2. Furthermore, a symmetric ma-
trix X = X> is obviously normal, which extends the analysis of Marvel,
Kleinberg, Kleinberg et al. (2011) to that of normal matrices.

Recall that normal matrices are (block)-diagonalizable with blocks of diagonalizable

size at most 2 by an orthogonal transformation: if X0 ∈ N , then orthogonal

U>X0U = Λ0, (8.13)

where Λ0 consists of real 1× 1 scalar blocks Ai and real 2× 2 blocks B j =

α j I2 +β j J2 with β j 6= 0.
Note that if Λ(t) is the solution to the initial value problem Λ̇ = Λ2,

Λ(0) = Λ0, then X(t) := UΛ(t)U> is the solution to Eq. (8.7). This shows
it is sufficient to solve system Eq. (8.7) in case of scalar X or in case of
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a specific, 2 × 2, normal matrix X. The scalar case is easy to solve: the
solution of ẋ = x2, x(0) = x0, is

x(t) =
x0

1− x0t
, (8.14)

which is easily verified. For x0 < 0 this is valid for time t ∈ [0, ∞) while for
x0 > 0 this is valid for time t ∈ [0, 1/x0) and it blows up at time t∗ = 1/x0,
while for x0 = 0, x(t) = 0. We turn to the 2× 2 case by considering:

Ẋ = X2, X(0) = α I2 +βJ2, where β > 0. (8.15)

Lemma 8.6. The forward solution X(t) of Eq. (8.15) is defined for all t ∈ [0,+∞),
and

lim
t→+∞ X(t) = 0 and lim

t→+∞ X(t)
|X(t)|F

= −
√

2
2

I2.

Proof. Let X0 = S0 + A0, S0 = α I2 and A0 = βJ2 where J2 is as defined
in Eq. (8.12). Then the solution X(t) of Eq. (8.15) can be decomposed as
S(t) + A(t), where

Ṡ = S2 + A2, S(0) = S0, (8.16a)

Ȧ = AS + SA, A(0) = A0. (8.16b)

Note that Eq. (8.16a) is a matrix Riccati differential equation (Abou-Kandil,Riccati

2003) with the property that the set L := {sI2 + aJ2|s, a ∈ R}, is an invari-
ant set under the flow. Therefore it suffices to solve the scalar Riccati dif-
ferential equation corresponding to the dynamics of the scalar coefficients
s and a:

ṡ = s2 − a2, s(0) = α, (8.17a)

ȧ = 2as, a(0) = β, (8.17b)

whose solution is given implicitly by:

s2 +

(
a− 1

2c

)2
=

(
1
2c

)2
if c 6= 0,

where c is an integration constant. So, the orbits form circles which are
centred at (0, 1/2c) and pass through (0, 0), and by a = 0 if c = 0. The
phase portrait of system (8.17) is illustrated in Fig. 8.1.
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0

0

s

a

Fig. 8.1 Phase portrait of complex eigenvalue

All solutions (s(t), a(t)) of system 8.17, not starting on the s-axis, con-
verge to zero as t → +∞, and approach the origin in the second quadrant
for solutions in the upper-half-plane, and in the third quadrant for solu-
tions in the lower-half-plane. Moreover, since the s-axis is the tangent line
to every circular orbit at the origin, the slopes a(t)/s(t) converge to 0 along
every solution limt→+∞ a(t)/s(t) = 0. Consequently, the forward solution
X(t) of Eq. (8.15) satisfies:

lim
t→+∞ X(t) = lim

t→+∞ s(t)I2 + a(t)J2 = 0,

and

lim
t→+∞ X(t)

|X(t)|F
= −
√

2
2

I2.

Combining the solution for the scalar and 2 × 2 case yields our main

177
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result in the normal case:

Theorem 8.7. Let X0 ∈ N , and let (U, Λ0) be as in Eq. (8.13). Define

t̄i =

{
1/ai if ai > 0

+∞ if ai ≤ 0
for all i = 1, . . . , k,

where ai correspond to a real eigenvalue, and let t̄ = mini t̄i. Then the forward
solution X(t) of Eq. (8.7) is defined for [0, t̄).

If there is a unique i∗ ∈ {1, . . . , k} such that t̄ = t̄i∗ is finite, then

lim
t→t̄i∗−

X(t)
|X(t)|F

= Ui∗U>i∗ ,

where Ui∗ is the i∗th column of U, an eigenvector corresponding to eigenvalue ai∗

of X0.

Proof. Consider the initial value problem:

Λ̇ = Λ2, Λ(0) = Λ0.

Its solution is given by

Λ(t) =



a1
1−a1t . . . 0 0 . . . 0

...
. . .

...
...

. . .
...

0 . . . ak
1−akt 0 . . . 0

0 . . . 0 X1(t) . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . Xl(t)


,

where for all j = 1, . . . , l, X j(t) is the forward solution of Eq. (8.15), which
is defined for all t in [0,+∞), and converges to 0 as t → +∞ by Lemma
8.6.

This clearly shows that Λ(t) is defined in forward time for t in [0, t̄).
Since the solution of Eq. (8.7) is given by X(t) = UΛ(t)U>, X(t) is also
defined in forward time for t in [0, t̄). It follows from unitary invariance of
the Frobenius norm that

X(t)
|X(t)|F

= U
Λ(t)
|Λ(t)|F

U>.
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If i∗ ∈ {1, . . . , k} is the unique value such that t̄ = t̄i∗ , then using the
unitary invariance

lim
t→t̄∗i

X(t)
|X(t)|F

= U lim
t→t̄∗i

Λ(t)
|Λ(t)|F

U> = Uei∗ e>i∗U
> = Ui∗U>i∗ ,

where ei∗ denotes the i∗th standard unit basis vector of Rn.

Theorem 8.7 provides a sufficient condition guaranteeing that social
balance is achieved as stated in theorem 7.4.

Generic initial condition

Although theorem 8.7 provides a sufficient condition for the emergence
of social balance, it requires that the initial condition X0 is normal. But
the set N of normal matrices has measure zero in the set of all real n× n
matrices, and thus the question arises if social balance will arise for non-
normal initial conditions as well. We investigate this issue here, and will
see that generically, social balance is not achieved.

If X0 is a general real n× n matrix, we can put it in real Jordan canonical
form by means of a similarity transformation: Jordan form

X(0) = TΛ0T−1, TT−1 = In, (8.18)

with Λ0 = diag(A1, . . . , Ak , B1, . . . , Bl), where Ai are real Jordan blocks Jordan block

and

B j =


Ci I2 . . . 0

0 Ci
. . . 0

...
...

. . .
...

0 0 . . . Ci

 , C j = α j I2 +β j J2, (8.19)

with β j 6= 0. The analysis could be done similarly using complex eigen-
values, but we prefer to remain in the real domain.

We again observe that if Λ(t) is the solution to the initial value prob-
lem Λ̇ = Λ2, Λ(0) = Λ0, then X(t) := TΛ(t)T−1, is the solution to
Eq. (8.7). Again, it is sufficient to solve system (8.7) in case of specific
block-triangular X of the form Ai or B j as in Eq. (8.19). To deal with the
first form Ai, we first we consider more general, triangular Toeplitz initial Toeplitz matrix
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8 Models of social balance

conditions:

X(0) =


x1(0) x2(0) · · · xn(0)

0 x1(0)
. . . xn−1(0)

...
...

. . .
...

0 0 · · · x1(0)

 , (8.20)

with xi(0) reals, and denote T T = {X | X is of the form (8.20)}. It turns
out that this is an invariant set for the system, which can be easily verified
by noting that if X belongs to T T , then so does X2.

Lemma 8.8. Let X(0) ∈ T T with

xi(0) =


a 6= 0 if i = 1

1 if i = 2

0 otherwise

.

Then the forward solution X(t) of Eq. (8.7) is defined on [0, t∗) where t∗ = 1/a if
a > 0 and on t∗ = ∞ if a ≤ 0, belongs to T T , and satisfies

xi(t) = pi

(
1

1− at

)
, t ∈ [0, t∗),

where each pi(z) is a polynomial of degree i:

pi(z) =

{
az if i = 1

1
ai−2 zi + · · ·+ ciz2 otherwise

, (8.21)

where ci is some real constant, so that pi(z) has no constant or first order terms
when i > 1.

Proof. First note that system (8.7) can be solved recursively for matrices of
type (8.20), starting with x1(t), followed by x2(t), x3(t), . . . . Only the first
equation for x1 is non-linear, whereas the equations for x2, x3, . . . are linear.
To see this, we write these equations:

ẋi =


x2

1, x1(0) = a if i = 1

(2x1(t))x2, x2(0) = 1 if i = 2

(2x1(t))xi + ∑
i−1
k=2 xk(t)xi−(k−1)(t), xi(0) = 0 if i > 2

.

The forward solution for x1 is x1(t) = a
1−at , for t ∈ [0, t∗), which establishes
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the result if i = 1. The forward solution for x2 is: x2(t) = 1
(1−at)2 , for

t ∈ [0, t∗), which establishes the result if i = 2. If i > 2, we obtain the
proof by induction on n. Assume the result holds for i = 1, . . . , n, for some
n ≥ 2, and consider the equation for xn+1. Using that xn(0) = 0 for n ≥ 2,
the solution is given by:

xn+1(t) = e
∫ t

0 2x1(s)ds

[
0 +

∫ t

0

(
n

∑
k=2

xk(s)xn−k+2(s)

)
e
∫ s

0 −2x1(τ)dτ ds

]
.

Since e
∫ t

0 2x1(s)ds = x2(t) and thus e
∫ s

0 −2x1(τ)dτ = 1/x2(s), it follows that:

xn+1(t) =
1

(1− at)2

[∫ t

0

( n

∑
k=2

pk(1/(1− as))

pn−k+2(1/(1− as))
)
(1− as)2ds

]
.

Since the polynomials appearing in the integral take the form of Eq. (8.21),
they are all missing first order and constant terms, and thus there follows
that

xn+1(t) =
1

(1− at)2

[∫ t

0

( n

∑
k=2

1
an−2

1
(1− as)n+2 +

· · ·+ ckcn−k+2
1

(1− as)4

)
(1− as)2ds

]

and so that

xn+1(t) =
1

an−1
1

(1− at)n+1 + · · ·+ cn+1

(1− at)2 , t ∈ [0, t∗),

where Kn+1 and cn+1 are certain constants (which are related in some way
which is irrelevant for what follows). This shows that xn+1(t) is indeed of
the form pn+1(1/(1− at)) with pn+1(z) as in Eq. (8.21).

Next we consider Eq. (8.7) in case X(0) is a block triangular Toeplitz
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initial condition:

X(0) =


B1(0) B2(0) · · · Bn(0)

0 B1(0)
. . . Bn−1(0)

...
...

. . .
...

0 0 · · · B1(0)

 , (8.22)

with Bi(0) = αi I2 +βi J2 withαi ,βi ∈ R, and denote

BT T = {X | X is of the form (8.22)}.

Again the set BT T is invariant for system (8.7). We use this to solve
Eq. (8.7) in case X(0) is a real Jordan block corresponding to a pair of eigen-
valuesα ± jβ.

Lemma 8.9. Let X(0) ∈ BT T with

Bi(0) =


α I2 +βJ2 if i = 1

I2 if i = 2

0 otherwise

.

Then the forward solution X(t) of Eq. (8.7) is defined on [0,+∞), and it belongs
to BT T .

Proof. Just like in the proof of proposition 8.8, we note that system (8.7)
can be solved recursively, starting with X1(t), followed by X2(t), X3(t),
. . . . Only the first equation for X1 is non-linear, whereas the equations for
X2, X3, . . . are linear. To see this, we write these equations:

Ẋi =


X2

1 , X1(0) = α I2 +βJ2 if i = 1

(2X1(t))X2, X2(0) = I2 if i = 2

(2X1(t))Xi + ∑
i−1
k=2 Xk(t)Xi−(k−1)(t), Xi(0) = 0 if i > 2

.

Here we have used the fact that X1Xi + XiX1 = 2X1Xi, since any two ma-
trices of the form pI2 + qJ2 commute and the matrices Xi(t) are of this form.

By Lemma 8.6, the forward solution for X1(t) is defined for all t in
[0,+∞) (and in fact, converges to zero as t→ +∞).

Since the X1(t) commute for every pair of t’s, the forward solution for
X2(t) is given by Rugh (1996) X2(t) = e

∫ t
0 2X1(s)ds, for t ∈ [0,+∞), where
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i j

k

Ẋ = X 2

The link to
be updated.

What does i
think of k?

What does k
think of j?

X (0) t X (t∗)

Fig. 8.2 Generic behaviour of Ẋ = X2

this solution exists for all forward times t because X1(t) is bounded and
continuous. Similarly, the forward solution for Xi(t) when i > 2, is given
by the variation of constants formula:

Xi(t) = X2(t)

[∫ t

0
X−1

2 (s)

(
i−1

∑
k=2

Xk(s)Xi−(k−1)(s)

)
ds

]
,

for t ∈ [0,+∞) when i > 2, where these solutions are recursively defined
for all forward times because the formula only involves integrals of con-
tinuous functions.

Combining both results puts us in a position to state and prove our
main result.

Theorem 8.10. Let X(0) ∈ Rn×n and (T, Λ0) as in Eq. (8.18) with (8.19). Let
a1 > a2 ≥ · · · ≥ ak with a1 > 0 a simple eigenvalue with corresponding right
and left-eigenvectors U1 and V>1 respectively:

X(0)U1 = a1U1 and V>1 X(0) = a1V>1 .

Then the forward solution X(t) of Eq. (8.7) is defined for [0, 1/a1), and

lim
t→1/a1

X(t)
|X(t)|F

=
U1V>1
|U1V>1 |F

.

Proof. Consider the initial value problem Λ̇ = Λ2, Λ(0) = Λ0, whose
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8 Models of social balance

solution is given by

Λ(t) = diag(A1(t), . . . , Ak(t), B1(t), . . . , Bl(t)),

where for all i = 1, . . . , k, Ai(t) is the forward solution of Eq. (8.7) with
Ai(0) of the form Ai in (8.19), which by Lemma 8.8 is defined for all t ∈
[0, 1/ai). Since a1 > a2 ≥ · · · ≥ ak, A1(t) blows up first when t → 1/a1.
The matrices B j(t), j = 1, . . . , l, are the forward solution of Eq. (8.7) with
B j(0) of the form B j in Eq. (8.19), and by Lemma 8.9, they are defined for
all t in [0,+∞).

This clearly shows that Λ(t) is defined in forward time for t in [0, 1/a1).
Since the solution of Eq. (8.7) is given by X(t) = TΛ(t)T−1, X(t) is also
defined in forward time for t in [0, 1/a1), and it follows that

lim
t→1/a1

X(t)
|X(t)|F

= lim
t→1/a1

TΛ(t)T−1

|X(t)|F

=
Te1e>1 T−1

|Te1e>1 T−1|F
=

U1V>1
|U1V>1 |F

,

where e1 denotes the first standard unit basis vector of Rn.

Theorem 8.10 implies that social balance is usually not achieved when
X(0) is an arbitrary real initial condition, illustrated in Fig. 8.2. Indeed,
if X0 has a simple, positive, real eigenvalue a1, and if we assume that no
entry of the right and left eigenvectors U1 and V>1 are zero (an assumption
which is generically satisfied), then in general, up to a permutation of its
entries, the sign patterns of U1 and V>1 are:

U1 =


+

+

−
−

 and V>1 =
(
+ − + −

)

implies that

U1V>1 =


+ − + −
+ − + −
− + − +

− + − +

 .

Then theorem 7.4 implies that the normalized state of the system does not
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become balanced in finite time.
This shows that in general, unless X0 is normal (so that theorem 8.7 is

applicable), we cannot expect that social balance will emerge for the model
Ẋ = X2.

8.3 Continuous time transpose model

The previous model Ẋ = X2 will in general not converge to social balance,
unless the initial condition is normal with a positive single real eigenvalue.
Hence, for general initial conditions, we do not expect the model to con-
verge to social balance. Is remains open to see what model then is expected
to converge to social balance in general. In this section we will suggest such
a model, and prove that generically it converges to social balance.

Let us briefly reconsider the gossiping process underlying the model
Ẋ = X2. In our example of Bob and John, the following happens. Bob asks
others what they think of John. Bob takes into account what he thinks of
the people he talks to, and adjusts his opinion of John accordingly. An al-
ternative approach is to consider a type of homophily process (Mcpherson,
Smith-Lovin and Cook, 2001; Durrett and Levin, 2005; Fu, Nowak, Chris-
takis et al., 2012): people tend to befriend people who think alike. When
Bob seeks to revise his opinion of John, he talks to John about everybody
else (instead of talking to everybody else about John). For example, sup-
pose that Bob likes Alice, but that John dislikes her. When Bob and John
talk about Alice, they notice they have opposing views about her, and as
a result the relationship between Bob and John deteriorates. On the other
hand, should they share similar opinions about Alice, their relationship
will improve. Thus, our alternative model for the update law of the repu-
tations is:

Ẋi j = ∑
k

XikX jk or Ẋ = XX>, X(0) = X0, (8.23)

where again, each Xi j denotes the real-valued opinion agent i has about
agent j. Notice that for i = j, the value of Xii is interpreted as a measure of
self-esteem of agent i. In this case Ẋii = ∑k X2

ik ≥ 0 contrary to the earlier
model, and so the self-esteem is always increasing. We shall call this model
the “transpose model”, because of the transpose we use in the model. No-
tice that an alternative specification could be Ẋ = X>X, in which case Bob
and John don’t talk about what they think of Alice, but what Alice thinks
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of them. Although this seems to be less realistic, it might be an interesting
model to study nonetheless. In this thesis we will limit ourselves to the
model Ẋ = XX>.

As in the case of model Ẋ = X2, we split up the analysis in two parts.
First we consider system (8.23) with normal initial condition X0, and we
shall see that not all initial conditions lead to the emergence of a balanced
network in this case, in contrast to the behaviour of Eq. (8.7). Secondly,
we will see that for non-normal, generic initial conditions X0, we typi-
cally do get the emergence of social balance, also contrasting the behaviour
of Eq. (8.7).

Normal initial condition

As for the model Ẋ = X2 the set N of normal matrices is invariant fornormal matrix

Ẋ = XX>. By using the same diagonalisation as in Eq. (8.13), if Λ(t) is the
solution to the initial value problem Λ̇ = ΛΛ>, Λ(0) = Λ0, then X(t) :=
UΛ(t)U>, is the solution to Eq. (8.23). This shows it is sufficient to solve
system (8.23) in case of scalar X or in case of a specific 2× 2 normal matrix
X. The scalar case is easy to solve and follows Eq. (8.14), so we turn to the
2× 2 case by considering

Ẋ = XX>, X(0) = α I2 +βJ2, where β 6= 0. (8.24)

We define the angleφ as

φ = arctan
(
α

β

)
, φ ∈

(
−π

2
,
π

2

)
. (8.25)

Lemma 8.11. Define t̄ as

t̄ =
π

2β
− φ
β

. (8.26)

Then the forward solution X(t) of Eq. (8.24) is:

X(t) = β tan(βt +φ)I2 +βJ2, t ∈ [0, t̄). (8.27)

Moreover,

lim
t→t̄−

X(t) = +∞I2 +βJ2 and lim
t→t̄−

X(t)
|X(t)|F

=

√
2

2
I2.

Proof. Let X0 = S0 + A0, S0 = α I2, and A0 = βJ2. Then the solution X(t)
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of Eq. (8.24) can be decomposed as S(t) + A(t), where

Ṡ = (S + A)(S− A), S(0) = S0, (8.28a)

Ȧ = 0, A(0) = A0, (8.28b)

so A(t) = A0, and reduces to

Ṡ = (S + A0)(S− A0), S(0) = S0 (8.29)

Note that Eq. (8.29) is a matrix Riccati differential equation with the prop- Riccati

erty that the line L = {α I2|α ∈ R}, is an invariant set under the flow.
Therefore it suffices to solve the scalar Riccati differential equation corre-
sponding to the dynamics of the diagonal entries of S: ṡ = s2 +β2, s(0) =
α, whose forward solution is: s(t) = β tan (βt +φ) , for t ∈ (0, t̄), where t̄
is given by Eq. (8.26). Consequently, the forward solution X(t) of Eq. (8.24)
is given by: X(t) = S(t) + A0 = β tan(βt +φ)I2 +βJ2, for t ∈ (0, t̄), and
thus limt→t̄− X(t) = +∞I2 +βJ2 and

lim
t→t̄−

X(t)
|X(t)|F

=
X(t)√

2|β sec(βt +φ)|
=

√
2

2
I2.

Combining the solution for the 1× 1 scalar case in Eq. (8.14) and Lemma
8.11 yields our main result:

Theorem 8.12. Let X0 ∈ N , and let (U, Λ0) be as in Lemma 8.13. Define

t̄i =

{
1/ai if ai > 0

+∞ if ai ≤ 0
for all i = 1, . . . , k,

and

t̄ j =
π

2β j
− φ j

β j
for all j = 1, . . . , l,

where φ j = arctan
(
α j
β j

)
and let t̄ = mini, j{t̄i , t̄ j}. Then the forward solution

X(t) of Eq. (8.23) is defined for [0, t̄).
If there is a unique i∗ ∈ {1, . . . , k} such that t̄ = t̄i∗ is finite, then

lim
t→t̄i∗−

X(t)
|X(t)|F

= Ui∗U>i∗ ,
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where Ui∗ is the i∗th column of U, an eigenvector corresponding to eigenvalue ai∗

of X0.
If there is a unique j∗ ∈ {1, . . . , l} such that t̄ = t̄ j∗ , then

lim
t→t̄ j∗−

X(t)
|X(t)|F

=

√
2

2
U j∗U>j∗ ,

where U j∗ is an n × 2 matrix consisting of the two consecutive columns of U
which correspond to the columns of the 2× 2 block B j∗ in Λ0.

Proof. Consider the initial value problem:

Λ̇ = ΛΛ>, Λ(0) = Λ0.

By Lemma 8.11 its solution is given by

Λ(t) =



a1
1−a1t . . . 0 0 . . . 0

...
. . .

...
...

. . .
...

0 . . . ak
1−akt 0 . . . 0

0 . . . 0 X1(t) . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . Xl(t)


,

where for all j = 1, . . . , l, X j(t) is given by the 2× 2 matrix in Eq. (8.27)
with β, φ and t̄ replaced by β j, φ j and t̄ j respectively. This clearly shows
that Λ(t) is defined in forward time for t in [0, t̄). Since the solution of
Eq. (8.23) is given by X(t) = UΛ(t)U>, X(t) is also defined in forward time
for t in [0, t̄). It follows from unitary invariance of the Frobenius norm that

X(t)
|X(t)|F

= U
Λ(t)
|Λ(t)|F

U>.

If i∗ ∈ {1, . . . , k} is the unique value such that t̄ = t̄i∗ , then

lim
t→t̄∗i

X(t)
|X(t)|F

= U lim
t→t̄∗i

Λ(t)
|Λ(t)|F

U>

= Uei∗ e>i∗U
> = Ui∗U>i∗ ,

where ei∗ denotes the i∗th standard unit basis vector of Rn.
If j∗ ∈ {1, . . . , l} is the unique value such that t̄ = t̄ j∗ , then by Lemma
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8.11:

lim
t→t̄∗j

X(t)
|X(t)|F

= U lim
t→t̄∗j

Λ(t)
|Λ(t)|F

U>

=

√
2

2
UE j∗U> =

√
2

2
U j∗U>j∗ ,

where E j∗ has exactly two non-zero entries equal to 1 on the diagonal po-
sitions corresponding to the block B j∗ in Λ0.

A particular consequence of theorem 8.12 is that if X0 has a complex
pair of eigenvalues, the solution of Ẋ = XX> always blows up in finite
time, even if all real eigenvalues of X0 are non-positive. Recall that the so-
lution of Ẋ = X2 blows up in finite time, if and only if X0 has a positive,
real eigenvalue. Another implication of theorem 8.12 is that if blow-up oc-
curs, it may be due to a real eigenvalue of X0, or to a complex eigenvalue.
In contrast, if the solution of Ẋ = X2 blows up in finite time, it is necessar-
ily due to a positive, real eigenvalue, and never to a complex eigenvalue.
When the solution of Ẋ = XX> blows up because of a positive, real eigen-
value of X0, the system will achieve balance, just as in the case of system
Ẋ = X2. If on the other hand, finite time blow up of Ẋ = XX> is caused
by a complex eigenvalue of X0, we show that in general one cannot expect
to achieve a balanced network. Assume there is a unique j∗ such that:

lim
t→t̄∗j−

X(t)
|X(t)|F

=

√
2

2
U j∗U>j∗ ,

Assuming that no entry of U j∗ is zero, the sign pattern of U j∗U>j∗ , with

U∗j =


p1 q1
p2 −q2
−p3 q3
−p4 −q4


is given by: 

+ ? ? −
? + − ?
? − + ?
− ? ? +

 ,
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up to a suitable permutation, where all pi and qi, i = 1, . . . , 4, are entry-
wise positive vectors, and where

〈p1, q1〉+ 〈p4, q4〉 = 〈p2, q2〉+ 〈p3, q3〉,

because U is an orthogonal matrix. The ? are not entirely arbitrary because
U j∗U>j∗ is a symmetric matrix, but besides that their signs can be arbitrary.

Generic initial condition

Consider
Ẋ = XX>, X(0) = X0, (8.30)

where X is a real n× n matrix, which is not necessarily normal.

We first decompose the flow (8.30) into flows for the symmetric and
skew-symmetric parts of X. Let X = S+ A, X0 = S0 + A0, where S, S0 ∈ Sskew-symmetric

matrix and A, A0 ∈ A are the unique symmetric and skew-symmetric parts of X
and X0 respectively. If X(t) satisfies Eq. (8.30), then it can be verified that
S(t) and A(t) satisfy the system:

Ṡ = (S + A)(S− A), S(0) = 0, (8.31)

Ȧ = 0, A(0) = A0, (8.32)

Consequently, A(t) = A0 for all t, and thus the skew-symmetric part of the
solution X(t) of Eq. (8.30) remains constant and equal to A0. Throughout
this subsection we assume that A0 6= 0, for otherwise X(0) is symmetric,
hence normal, and the results from the previous subsection apply. It fol-
lows that we only need to understand the dynamics of the symmetric part.
Then the solution X(t) to Eq. (8.30) is given by X(t) = S(t) + A0, where
S(t) solves Eq. (8.31), and in view of S ⊥ A, there follows by Pythagoras’
Theorem that: |X(t)|2F = |S(t)|2F + |A0|2F, and thus

X(t)
|X(t)|F

=
S(t) + A0(

|S(t)|2F + |A0|2F
) 1

2
. (8.33)

Next we shall derive an explicit expression for the solution of Eq. (8.31).
We start by performing a change of variables:

Ŝ(t) = e−tA0 S(t) etA0 . (8.34)
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Continuous time transpose model

This yields the equation

˙̂S = Ŝ2 − A2
0, Ŝ(0) = S0. (8.35)

We perform a further transformation which diagonalizes −A2
0. Let V be

an orthogonal matrix such that −V>A2
0V = D2, where D is the diagonal

matrix D := diag(0,ω1 I2, . . . ,ωk Ik) where k ≥ 1 (because A0 6= 0) and all
ω j > 0 without loss of generality. Setting

S̃ = V> ŜV, (8.36)

and multiplying Eq. (8.35) by V on the left, and by V> on the right, we find
that:

˙̃S = S̃2 + D2, S̃(0) = S̃0 := V>S0V. (8.37)

Notice that this is a matrix Riccati differential equation, a class of equations
with specific properties which are briefly reviewed next.

Consider a general matrix Riccati differential equation: Riccati

Ṡ = SMS− SL− L>S + N, (8.38)

where M = M>, N = N> and L arbitrary, defined on S . Associated to this
equation is a linear system(

Ṗ
Q̇

)
= H

(
P
Q

)
, H :=

(
L −M
N −L>

)
, (8.39)

where H is a Hamiltonian matrix, i.e. J2nH = (J2nH)> holds, where J2n is
as defined in Eq. (8.12). The following fact is well-known (Abou-Kandil,
2003).

Lemma 8.13. Let
(

P(t)
Q(t)

)
be a solution of Eq. (8.39). Then, provided that P(t) is

non-singular,
S(t) = Q(t)P(t)−1, (8.40)

is a solution of Eq. (8.38). Conversely, if S(t) is a solution of Eq. (8.38), then
there exists a solution

(
P(t)
Q(t)

)
of Eq. (8.39) such that Eq. (8.40) holds, provided

that P(t) is non-singular.

Proof. Taking derivatives in S(t)P(t) = Q(t) yields that Ṡ = (Q̇− SṖ)P−1,
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8 Models of social balance

and using Eq. (8.39),

Ṡ = (NP− L>Q− S(LP−MQ))P−1 = N − L>S− SL + SMS,

showing that S(t) solves Eq. (8.38). For the converse, let S(t) be a solution
of Eq. (8.38). Let

(
P(t)
Q(t)

)
with

(
P(0)
Q(0)

)
=
(

In
S(0)

)
be the solution of Eq. (8.39).

Then

d
dt

(
Q(t)P−1(t)

)
=Q̇P−1 −QP−1ṖP−1

=(NP− L>Q)P−1 −QP−1(LP−MQ)P−1

=(QP−1)M(QP−1)− (QP−1)L− L>(QP−1) + N,

implying that QP−1 is a solution to Eq. (8.38). Since S(0) = Q(0)P−1(0), it
follows from uniqueness of solutions that S(t) = Q(t)P−1(t).

In other words, in principle we can solve the non-linear equation (8.38)
by first solving the linear system (8.39), and then use formula (8.40) to de-
termine the solution of Eq. (8.38).

We carry this out for our particular Riccati equation (8.37) which is of
the form (8.38) with M = In, L = 0, N = D2. The corresponding Hamil-
tonian is H =

(
0 −In

D2 0

)
. We partition D in singular and non-singular parts:

D =

(
0 0
0 D̃

)
, where D̃ :=

ω1 I2 . . . 0
...

. . .
...

0 . . . ωk I2

 ,

where D̃ is positive definite since all ω j > 0. Partitioning H correspond-positive definite
matrix ingly:

H =


0 0 −In−2k 0
0 0 0 −I2k
0 0 0 0
0 D̃2 0 0

 . (8.41)
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This matrix is then exponentiated to solve system (8.39):

(
P(t)
Q(t)

)
=


In−2k 0 −tIn−2k 0

0 c 0 −D̃−1s
0 0 In−2k 0
0 D̃s 0 c


(

P(0)
Q(0)

)
,

where we have introduced the following notation:

s(t) := diag(sin(ω1t)I2, . . . , sin(ωkt)I2) = sin(D̃t),

and similarly c(t) = cos(D̃t). By setting P(0) = In, and Q(0) = S̃0, and us-
ing Lemma 8.13, it follows that the solution of the initial value problem 8.37
is given by S̃(t) = Q(t)P(t)−1,

(
P(t)
Q(t)

)
=


(
(In−2k − t)S̃0 0

0 c(t)− D̃−1s(t)S̃0

)
(

In−2k S̃0 0
0 D̃s(t) + c(t)S̃0

)
 , (8.42)

for all t for which P(t) is non-singular. We now make the following as-
sumption:

Assumption A. The matrix P(t) is non-singular for all t in [0, t̄), where t̄ is finite
and such that s(t) is non-singular for all t in (0, t̄). Moreover, P(t̄) has rank
n− 1, or equivalently, has a simple eigenvalue at zero.

Later we will show that this assumption is generically satisfied, and
also that

t∗ = t̄, (8.43)

where [0, t∗) is the maximal forward interval of existence of the solution
S̃(t) of the initial value problem (8.37). Consequently, the theory of ODE’s
implies that limt→t̄ |S̃(t)|F = +∞, i.e. that t̄ is the blow-up time for the
solution S̃(t).

Assuming for the moment that assumption A is satisfied, back-trans-
formation using Eq. (8.34) and (8.36), yields that the solution S(t) of (8.31)
is S(t) = etA0 VS̃(t)V> e−tA0 , which is defined for all t in [0, t̄), because
etA0 V is bounded for all t (as it is an orthogonal matrix). It follows from
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8 Models of social balance

unitary invariance of the Frobenius norm that

lim
t→t̄

S(t)
|S(t)|F

= et̄A0 V
(

lim
t→t̄

S̃(t)
|S̃(t)|F

)
V> e−t̄A0 , (8.44)

provided that at least one of the two limits exists. If we partition S̃0 in Eq. (8.42)
as follows:

S̃0 =

(
(S̃0)11 (S̃0)12
(S̃0)

>
12 (S̃0)22

)
, with

(S̃0)11 = (S̃0)
>
11

(S̃0)22 = (S̃0)
>
22

,

we can rewrite P(t) and Q(t) on the time interval (0, t̄) as: P(t) = ∆(t)M(t)
with,

∆(t) =
(

tIn−2k 0
0 D̃−1s(t)

)
,

and

M(t) =
(

1/t− (S̃0)11 −(S̃0)12
−(S̃0)

>
12 D̃c(t)s−1(t)− (S̃0)22

)
= M>(t),

and

Q(t) =
(

(S̃0)11 (S̃0)12
c(t)(S̃0)

>
12 D̃s(t) + c(t)(S̃0)22

)
.

Note that the factorization of P(t) is well-defined on (0, t̄) because by as-
sumption A, the matrix s(t) is non-singular in the interval (0, t̄). Moreover,
assumption A also implies there exists a non-zero vector u corresponding
to the zero eigenvalue of M(t̄), i.e. M(t̄)u = 0, and that u is uniquely
defined up to scalar multiplication because the zero eigenvalue is simple.
More explicitly, partitioning u as

( u1
u2

)
, there holds that(

1/t̄− (S̃0)11 −(S̃0)12
−(S̃0)

>
12 D̃c(t̄)s−1(t̄)− (S̃0)22

)(
u1
u2

)
= 0. (8.45)

Notice that M(t) is at least real-analytic on the interval (0, t̄). Hence, it fol-
lows from Kato (1995) (see also Bunse-Gerstner, Byers, Mehrmann et al.,
1991; Still, 2001), that there is an orthogonal matrix U(t), and a diagonal
matrix Λ(t), both real-analytic on (0, t̄), such that: M(t) = U(t)Λ(t)U>(t),
for t ∈ (0, t̄), and thus M−1(t) = U(t)Λ−1(t)U>(t), for t ∈ (0, t̄). Return-
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i j

k

Ẋ = XXT

The link to
be updated.

What does i
think of k?

What does j
think of k?

X (0) t X (t∗)

Fig. 8.3 Generic behaviour of Ẋ = XX>

ing to Eq. (8.44), we obtain that:

lim
t→t̄

S(t)
|S(t)|F

= et̄A0 V lim
t→t̄

Q(t)U(t)Λ−1(t)U>(t)∆−1(t)
|Q(t)U(t)Λ−1(t)U>(t)∆−1(t)|F

V> e−t̄A0

= et̄A0 V
Q(t̄)uu>∆−1(t)
|Q(t̄)uu>∆−1(t)|F

V> e−t̄A0 .

Here, we have used the fact that M−1(t) is positive definite on the interval
(0, t̄), so that its largest eigenvalue (which is simple for all t < t̄ suffi-
ciently close to t̄, because of assumption A approaches +∞ -and not −∞-
as t → t̄. To see this, note that from its definition follows that M(t) is pos-
itive definite for all sufficiently small t > 0, because D̃ is positive definite.
Moreover, M(t) is non-singular on (0, t̄) since by assumption (A), P(t) is
non-singular on (0, t̄), and because M(t) = ∆−1(t)P(t) (it is clear from its
definition and assumption A that ∆(t) is non-singular on (0, t̄) as well).
Consequently, the smallest eigenvalue of M(t) remains positive in (0, t̄),
as it approaches zero as t → t̄. This implies that the largest eigenvalue of
M−1(t) is positive on (0, t̄), and approaches +∞ as t→ t̄, as claimed.

Note that:

Q(t̄)u =

(
(S̃0)11 (S̃0)12

c(t̄)(S̃0)
>
12 D̃s(t̄) + c(t̄)(S̃0)22

)(
u1
u2

)
=

(
(1/t̄)u1

D̃s−1(t̄)u2

)
= ∆−1(t̄)u,

where in the second equality, we used the second row of Eq. (8.45) , mul-
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8 Models of social balance

tiplied by c(t̄). From this follows that

lim
t→t̄

S(t)
|S(t)|F

= et̄A0 V
∆−1(t̄)uu>∆−1(t̄)
|∆−1(t̄)uu>∆−1(t̄)|F

V> e−t̄A0 =
ww>

|ww>|F
,

where w := et̄A0 V∆−1(t̄)u.
Taking limits for t → t̄ in Eq. (8.33), and using the above equality,

we finally arrive at the following result, which implies that system (8.30)
evolves to a socially balanced state (in normalized sense) when t→ t̄:

Proposition 8.14. Suppose that assumption A holds and A0 6= 0. Then the solu-
tion X(t) of 8.30 satisfies:

lim
t→t̄

X(t)
|X(t)|F

=
ww>

|ww>|F
.

with w = et̄A0 V∆−1(t̄)u.

This generic behaviour is illustrated in Fig. 8.3.

Genericity

Generically, assumption A holds, and 8.43 holds as well. There are two
aspects to assumption A:

1. The matrix P(t) is non-singular in the interval [0, t̄), but singular at
some finite t̄ such that:

t̄ < min
j=1,...,k

π

ω j
. (8.46)

2. P(t̄) has a simple zero eigenvalue.

To deal with the first item, suppose that the solution S̃(t) of Eq. (8.37) is
defined for all t ∈ [0, t∗) for some finite positive t∗. By Lemma 8.13, there
exist P(t) and Q(t) such that S̃(t) = Q(t)P−1(t), where P(t) and Q(t) are
components of the solution of system (8.39) with H defined in Eq. (8.41).
Then necessarily t̄ ≤ t∗. Thus, if we can show that t∗ < min j π/ω j,
then Eq. (8.46) holds. To show that t∗ < min j π/ω j, we rely on a par-
ticular property of matrix Riccati differential equations (8.38): their solu-
tions preserve the order generated by the cone of non-negative symmetric
matrices (see De Leenheer and Sontag, 2004). More precisely, if S1(t) and
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S2(t) are solutions of Eq. (8.38), and if S1(0) � S2(0), then S1(t) � S2(t),
for all t ≥ 0 for which both solutions are defined. The partial order no-
tation S1(t) � S2(t) means that the difference S2(t) − S1(t) is a positive
semi-definite matrix.

We apply this to equation (8.37) with S̃1(0) = αmin In and S̃2(0) = S̃(0),
where we choose αmin as the smallest eigenvalue of S̃(0) (or equivalently,
of S(0) = S0, since S̃(0) = V>S0V), so that clearly S̃1(0) � S̃2(0). Con-
sequently, by the monotonicity property of system (8.37), it follows that
S̃1(t) � S̃(t), as long as both solutions are defined. We can calculate the
blow-up time t∗1 of S̃1(t) explicitly, and then it follows that t∗ ≤ t∗1 , where
t∗ is the blow-up time of S̃(t). Indeed, equations of system (8.37) decouple
for an initial condition of the form αmin In, and the resulting scalar equa-
tions are scalar Riccati equations we have solved before. The blow-up time
for S̃1(t) is given by:

t∗1 =

min j=1,...,k

(
π

2ω j
− φ j
ω j

)
, ifαmin ≤ 0

min j=1,...,k

(
1

αmin
, π

2ω j
− φ j
ω j

)
, ifαmin > 0

.

with φ j := arctan
(
αmin
ω j

)
∈
(
− π2 , π2

)
. Notice that for all j = 1, . . . , k,

there holds that π
2ω j
− φ j
ω j

< π
ω j

, because by definition,
φ j
ω j
∈ (− π

2ω j
, π

2ω j
).

Consequently,
t̄ ≤ t∗ ≤ t∗1 < min

j=1,...,k

π

ω j
,

which establishes Eq. (8.46). In other words, we have shown that the first
item in assumption A is always satisfied.

The second item in assumption A may fail, but holds for generic initial
conditions as we show next. For this we first point out that the derivative
of each eigenvalue of M(t) is a strictly decreasing function in the interval
(0, t̄), independently of the value of the matrix S̃0. Indeed, the derivative
of eigenvalue λ j(t) of M(t) equals (see Kato, 1995):

λ̇ j(t) = u j(t)>Ṁ(t)u j(t) = −u j(t)>
(

1/t2 0
0 D̃2s−2(t)

)
u j(t),

where u j(t) is the normalized eigenvector of M(t) corresponding to λ j(t),
and which is analytic in the considered interval. Since Ṁ(t) is negative
definite in that interval, λ̇ j(t) is also negative and hence all eigenvalues of
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M(t) are strictly decreasing functions of t in that interval. Suppose now
that M(t) has a multiple eigenvalue 0 at t = t̄, then M(t̄) is positive semi-
definite since t̄ is the first singular point of M(t) and the eigenvalues are
decreasing function of t. If we now choose a positive semi-definite ∆S̃0

of
nullity 1, such that M(t̄) + ∆S̃0

also has nullity 1, then the perturbed ini-
tial condition (S̃0)p = S̃0 − ∆S̃0

yields the perturbed solution S̃p(t) which
can be factored as Qp(t)P−1

p (t), and where Pp(t) = ∆(t)Mp(t) (note that
∆(t) remains the same as before the perturbation) for Mp(t) = M(t) +∆S̃0
which now has a single root at the same minimal value t̄. To construct
such a matrix ∆S̃0

is simple since the only condition it needs to satisfy is
that M(t̄) and ∆S̃0

have a common null vector. Those degrees of freedom
show that the second item in assumption A is indeed generic.

Now that we have established that A generically holds, we show that
Eq. (8.43) is satisfied also. The proof is by contradiction. Earlier, we have
shown that t̄ ≤ t∗. Thus, if we suppose that Eq. (8.43) fails, then necessarily
t̄ < t∗. This implies that although P(t̄) is singular, the solution S̃(t) exists
for t = t̄. Our goal is to show that limt→t̄ |S̃(t)|F = +∞, which yields the
desired contradiction (by the theory of ODE’s).

We first claim the following:

If u 6= 0 and P(t̄)u = 0, then Q(t̄)u 6= 0. (8.47)

Indeed, if this were not the case, then there would exist some vector ū 6= 0
such that P(t̄)ū = 0 and Q(t̄)ū = 0. On the other hand, P(t) and Q(t) are
components of the matrix product(

P(t)
Q(t)

)
= etH

(
In
S̃0

)
,

where H is defined in Eq. (8.41). Multiplying the latter in t = t̄ by ū, and
using the previous expression, it follows from the invertibility of et̄H that
ū = 0, a contradiction. This establishes Eq. (8.47).

In the previous section, we factored P(t) as P(t) = ∆(t)M(t). Since
P(t) is non-singular on [0, t̄), and singular at t̄, it follows from Eq. (8.46)
and the definition of ∆(t), that M(t) is non-singular (and, in fact, positive
definite as shown in the previous section) on (0, t̄), and singular at t̄ as well.
Therefore, since M(t) is symmetric and real-analytic, it follows from Kato
(1995) that we can find a positive and real-analytic scalar functionε(t), and

198



Continuous time transpose model

a real-analytic unit vector u(t) such that:

M(t)u(t) = ε(t)u(t), ε(t) > 0 on (0, t̄), ε(t̄) = 0, |u(t)|2 = 1,

where |.|2 denotes the Euclidean norm. In particular, M(t̄)u(t̄) = 0, and
since ∆(t̄) is non-singular, it follows that P(t̄)u(t̄) = 0. Then Eq. (8.47)
implies that Q(t̄)u(t̄) 6= 0. Define the real-analytic unit vector

v(t) =
∆(t)u(t)
|∆(t)u(t)|2

, t ∈ (0, t̄),

and calculate

lim
t→t̄
|S̃(t)v(t)|2 = lim

t→t̄
|Q(t)P−1(t)v(t)|2

=
|Q(t̄)u(t̄)|2
|∆(t̄)u(t̄)|2

lim
t→t̄

1
ε(t)

= +∞.

Since for any real n× n matrix A, and for any unit vector x (i.e. |x|2 = 1)
holds that |Ax|2 ≤ |A|F, it follows that limt→t̄ |S̃(t)|F = +∞. This yields
the sought-after contradiction.

By combining Proposition 8.14 and the results in this subsection, we
have proved the main result concerning the generic emergence of balance
for solutions of system Eq. (8.30).

Theorem 8.15. There exists a dense set of initial conditions X0 in Rn×n such that
the corresponding solution X(t) of Eq. (8.30) satisfies:

lim
t→t̄

X(t)
|X(t)|F

=
ww>

|ww>|F
.

with w = et̄A0 V∆−1(t̄)u.

Proof. The set of initial conditions X0 for which A0 6= 0 and assumption A
holds is dense in Rn×n.

Summarizing, the model Ẋ = X2 does not lead to social balance gener-
ically, whereas the model Ẋ = XX> does. The difference between the two
models can be understood in terms of gossiping: the transpose model as-
sumes that people who wish to revise their opinion about someone talk to
that person about everybody else, while the earlier model assumed that
people talk about that person to everybody else. Given that social balance
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8 Models of social balance

often holds to some degree, it is more likely that people change their opin-
ions of each other based on the model Ẋ = XX> then on Ẋ = X2.
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9 Evolution of cooperation

WE will now discuss a subject that perhaps seems remote: the evo-
lution of cooperation (Axelrod, 1984; Nowak, 2006a). Although
the subject is not commonly considered when talking about neg-

ative links, the two are naturally related. A positive link indicates people
are cooperating, while a negative link indicates people are not cooperating
with each other. We will first introduce the general subject, which is usu-
ally studied through the so-called prisoner’s dilemma or variants thereof.
As we will see, it is usually better to defect (i.e. not cooperate), and evolu-
tion tends to favour defection. The biggest question in this subject therefore
is: why do we so frequently then observe cooperation? In other words, un-
der what conditions can we expect cooperative behaviour to evolve? We
will first briefly discuss two types of answers to this question. The first
concerns repeated interaction and is known as “direct reciprocity” (Axel-
rod, 1984). The latter concerns reputation and the transfer of information,
known as “indirect reciprocity” (Nowak and Sigmund, 2005). Finally, we
will consider what this has to do with negative links, and how this involves
the previously discussed models of social balance.

9.1 Game theory

The history of the evolution of cooperation is a long and tumultuous one,
and cooperation already posed problems for Darwin: if defection allows
individuals to obtain a higher fitness, then why do we observe coopera-
tion? Although Darwin himself did try to explain the situation, especially
concerning the cooperative behaviour of insects, it was not until around
the second world war that the problem was formalised.

In 1944 Von Neumann and Morgenstern published the “Theory of Games
and Economic behaviour” which was the first push towards the formali-
sation of the evolution of cooperation (Von Neumann and Morgenstern,
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2007). They studied various games, in which parties could take indepen-
dent decisions, each with a different payoff, and the focus was on deter-
mining the optimal decision (those which maximised the payoff). The fa-
mous contribution of John Nash was that he proved that for each game
(with a finite set of decision) such an optimal strategy exists (Nash, 1953).
Such an optimal strategy means that knowing the opponents strategy, you
choose the “best response”. If both strategies are the best response to each
other, such a pair is called a Nash equilibrium nowadays in his honour.

Another type of optimality condition however, is that of a Pareto op-
timum. In such an “optimal condition” no player can increase his payoff
without making another player worse off. The two conditions of optimal-
ity do not necessarily agree however, which then might results in a para-
dox. Although no player would individually choose a different strategy,
every player might be better off with an alternative strategy.

One of these specific games has become quite famous over the years,
and is known as the prisoner’s dilemma. Originally, the story goes as fol-
lows. Two suspects have been apprehended by the police after a robbery,
say Jack and Harry. However, the police has some difficulty in proving
the involvement of the two suspects, and if both prisoners don’t talk, they
can only convict them of a minor crime with a sentence of only one year.
However, the police tries to get a more severe conviction, and if one of the
prisoners rats out the other one, they will be able to get a conviction of 5
years for the other one. The police decide to proposes the following deal
to both prisoners: “If you talk, we will reduce your sentence by one year.”
Hence, if Jack betrays Harry while Harry doesn’t, Jack will get off with
no jail time, while Harry will have to do 5 years in prison. On the other
hand, if Jack also betrays Harry, then Harry can better betray Jack as well,
since he will then only serve 4 years instead of 5. So, in this case, for both
Harry and Jack individually it is better to betray each other (betrayal is a
Nash equilibrium). On the other hand, it is obvious that the best situation
for both is that they do not betray each other (remaining silent is a Pareto
optimum).

Although these conditions of optimality provide an interesting qualifi-
cation of the quality of a certain strategy, the focus here is on the evolution
of a certain behaviour (Maynard Smith, 1982). The study in this context
was first put forward by Maynard Smith and Price (1973), although a simi-
lar concept was also considered in another form by Hamilton (1967). Their
concept of an Evolutionary Stable Strategy (ESS) is actually very similar
to that of a Nash equilibrium. Furthermore, it is natural to specify some
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evolutionary dynamics, in order to state whether some specific strategy is
evolutionary stable: these are simply the fixed points of the evolutionary
dynamics.

We will now formalize these issues here, and briefly review some of
the concepts. We will restrict ourselves to symmetrical two player games.
Furthermore, there is a distinction between a finite population and an infi-
nite population. The first is usually modelled using discrete time and are
inherently stochastic in nature, while the latter gives rise to deterministic
differential equations. However, the differential equations arise as a limit
of large population size for some of the finite population models.

First, we define the set S = {1, . . . , q} of the different possible options.
Player 1 and 2 may each choose an option i ∈ S and j ∈ S. The payoff
for player 1 is then Ai j while for player 2 the payoff is A ji. We allow both
players to choose option i with a probability xi, and call this vector x the
strategy of the player, for which ∑ xi = 1. We call x a pure strategy if xi = 1 pure strategy

for some i (so that only choice i is used), and a mixed strategy otherwise mixed strategy

(Hofbauer and Sigmund, 1998).

Definition 9.1. Let x be a strategy and A the payoff matrix. Then x is called a
Nash equilibrium if Nash equilibrium

y>Ax ≤ x>Ax

for all y 6= x. If this inequality is strict, we call x a strict Nash equilibrium.

The idea behind this definition is that no player using strategy x will
have an incentive to change to any other strategy y. This can be seen as
follows. The payoff when option i is chosen versus option j is Ai j. Since
option i is chosen with probability yi by strategy y and option j is chosen
with probability x j by strategy x, the sum ∑i j yi Ai jx j = y>Ax is the ex-
pected payoff when a strategy y plays against a strategy x. Hence, if both expected payoff

players use strategy x, neither player can improve its payoff by switching
to a strategy y 6= x. In this sense, x is said to be a best reply to itself, since
if somebody plays strategy x, one should also play strategy x.

As we said earlier, the related concept of an Evolutionary Stable Strat-
egy (ESS) was developed by biologists relatively independently of the Nash
equilibrium (and some 20 years later). This can be formalized in a similar
way as the Nash equilibrium.

Definition 9.2. Let A be the payoff matrix. A strategy x is called an evolutionary
stable strategy (ESS) if for some y 6= x ESS

1. y>Ax ≤ x>Ax, or
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2. if y>Ax = x>Ax then y>Ay < x>Ay.

The motivation for ESS is the following. Let x and y be two strategies.
Suppose that we consider a third strategy that consists of the convex com-
bination of the two strategies z = εx + (1 − ε)y. The idea is then that
moving a bit from strategy x in the direction towards y should not increase
the payoff. Hence y>Az < x>Az which after rewriting gives

(1−ε)(x>Ax− y>Ax) +ε(x>Ay− y>Ay) > 0

which yields the stated inequalities. The first condition simply states that
the strategy should be a Nash equilibrium, while the second condition
states that if another strategy y is equally well against x, then it should
be less well against itself than x against y. Obviously, if a strategy is a
strict Nash equilibrium, it is ESS, which in turn implies that the strategy is
a (weak) Nash equilibrium.

For our small example of the prisoner’s dilemma, we thus have the
following payoff matrix

A = −
(C D

C 1 5
D 0 4

)
,

where cooperation (denoted by C) here means to keep silent, and defec-
tion (denoted by D) means to betray the other and talk to the police. The
payoffs here are negative since they correspond to years in jail, something
most people presumably like to avoid. Defecting corresponds to the pure
strategy x = (0, 1), with payoff x>Ax = −4. For any other strategy
y = (p, 1− p) we obtain

y>Ax = −5p− (1− p)4 < −4 = x>Ax,

so that indeed defecting is a strict Nash equilibrium, hence also an evolu-
tionary stable strategy. Nonetheless, the strategy y = (1, 0) has payoff

y>Ay = −1 > −4 = x>Ax,

and so y is preferable for both players.
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Initial population g g + 1 Final population

Low payoff
High payoff

Evolution Evolution Evolution

Interaction Interaction

Fig. 9.1 Schematic of the evolutionary dynamics

9.1.1 Finite population size

The basic idea of evolution is that of reproduction and fitness dependent
selection. Hence, agents that have a higher fitness, and are more likely to
reproduce (or less likely to die), as illustrated in Fig. 9.1. There are various
possible scenarios here, and we will discuss only a few of them, most no-
tably the Moran process (Nowak, Sasaki, Taylor et al., 2004), the pairwise
comparison (Traulsen, Nowak and Pacheco, 2006) (sometimes also known
as the Fermi process) and the Wright-Fisher process (Imhof and Nowak,
2006).

Let us assume there are n agents, and that each agent is of some type
Ti ∈ S. We denote by ns = |{Ti = s}| the number of agents that are of type
s, and of course ∑s ns = n. We denote the vector of ns by~n. We assume each
agent is interacting randomly with some other agents, and that no specific
population structure is present. We therefore assume that the fitness for
each agent of the same type is equal, and we denote the fitness for an agent fs(~n) fitness

of type s by fs(~n), which may depend on the number of agents of some
specific type.

Moran process

The Moran Process is very simple: we select an agent for reproduction with Moran Process

some probability proportional to their fitness (Nowak, Sasaki, Taylor et al.,
2004). So, the probability that some agent of type s reproduces is given by φs reproduction

probability

φs =
ns fs(~n)

n〈 f 〉 (9.1)

where 〈 f 〉 = 1
n ∑s ns fs is the average fitness of the population. We then

randomly choose another agent to die, which will be replaced by the off-
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spring from the agent chosen for reproduction. This probability is denoted
byωs =

ns
n . We denote accordingly by ns(g) the number of agents of type

s in generation g. The difference between two generations can then be de-
noted by ∆ns(g) = ns(g + 1)− ns(g). The update rules introduced above
can then be written explicitly as

Pr(∆ns(g) = −1) = (1−φs)ωs, (9.2a)

Pr(∆ns(g) = 0) = φsωs + (1−φs)(1−ωs), (9.2b)

Pr(∆ns(g) = 1) = φs(1−ωs). (9.2c)

For randomly mixing populations, the order of reproduction and dying
has no effect, but for structured populations it does. We will not discuss
this here.

Pairwise comparison

Another possibility instead of selecting one agent for reproduction and an-
other one for death, is to compare the relative fitness between two agents,
and let them compete to “take over” the other one’s spot, so to speak. One
of the advantages is that we don’t need to know the fitness of all agents,
but only of the two agents (Traulsen, Nowak and Pacheco, 2006; Traulsen,
Claussen and Hauert, 2005). These dynamics are known as the pairwise
comparison process (also the Fermi process). If we compare an agent ofpairwise

comparison
type r to type s, the probability that an agent of type r replaces an agent of
type s is then given by

φrs =
1

1 + e−β( fr(~n)− fs(~n))
. (9.3)

The parameter β corresponds to a certain intensity of selection. For high ββ intensity of
selection it is almost sure that if r has a higher fitness than s that he will “win” the

competition and φrs → 1 for β → ∞ if fr(~n) > fs(~n). For low β on the
other hand, almost all types will have the same probability to reproduce,
independently of their fitness, and that φrs → 1/2 for β → 0. Notice that
in general φsr = 1−φrs. The number of agents of a certain type can only
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be augmented by 1, and we obtain the following expressions

Pr(∆ns(g) = −1) =
ns(g)

n ∑
r 6=s

nr(g)
n

φrs, (9.4a)

Pr(∆ns(g) = 0) =
n2

s (g)
n

, (9.4b)

Pr(∆ns(g) = 1) =
ns(g)

n ∑
r 6=s

nr(g)
n

φsr. (9.4c)

Wright-Fisher process

Whereas the previous models only modelled the reproduction and death of
a single agent, in the Wright-Fisher process the whole population evolves Wright-Fisher

simultaneously (Imhof and Nowak, 2006). In this process one “evolution-
ary step” consists of randomly sampling n agents from the old population
based on their fitness, to form the new population. Hence

φs =
ns fs(~n)

n〈 f 〉 (9.5)

similar to the Moran process. However, now instead of selecting a single
agent, we select n agents. Hence, the probability that there are ns agents of
type s in the next generation is

Pr(ns(g + 1) = ns) =

(
ns

n

)
φns

s (1−φs)
n−ns (9.6)

and the expected number of agents of type s is 〈ns(g + 1)〉 = nφs. Hence,
a higher fitness fs(~n) leads to a higher φs, which in turn leads to a higher
expected number of agents in the next generation.

9.1.2 Fixation probability for 2× 2 games

Let us now focus on 2× 2 games, where we assume there are two types of
players, A players and B players. This corresponds to a payoff matrix with

A =

( A B
A a b
B c d

)
. (9.7)

Strategy A, corresponding to the pure strategy x = (1, 0) is then a Nash
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equilibrium if a ≥ c (and strictly Nash if the inequality is strict) and simi-
larly strategy B is a Nash equilibrium if d ≥ b. Strategy A is an ESS if a > c
or if a = c then b > d.

We are interested in the probability that A players (or B players) will
take over the whole population starting from n0 A players (or B players).
This quantity is known as the fixation probability ρA(n0) (or ρB(n0) for Bfixation probability

players) (Nowak, Sasaki, Taylor et al., 2004). We will focus on the Moran
process and the pairwise comparison, which behave rather similar. It can
be seen that this amounts to a sort of biased random walk on the number
of A players (or B players). Let us denote the number of A players by i,
and denote the transition probabilities as follows

Pr(∆nA = −1|i) = λ−i (9.8a)

Pr(∆nA = 0|i) = λ0
i (9.8b)

Pr(∆nA = +1|i) = λ+i . (9.8c)

Clearly λ−i + λ0
i + λ

+
i = 1, and so we can also write λ0

i = 1 − λ−i − λ+i .
Obviously, λ0

0 = λ0
n = 1 and the states i = 0 and i = n are absorbing. We

are then interested in the probability to reach state n (all A players) starting
from state i = n0, which we will denote by ρi = ρA(i). The probability ρi
to reach state n from state i is the probability ρi−1 to reach it from state i− 1
times the probability to go from state i to state i− 1, etc. . . , and we arrive
at the recursion

ρi = λ−i ρi−1 + λ
0
i ρi + λ

+
i ρi+1, (9.9)

In addition, we have that ρ0 = 0, because it is an absorbing state, and we
can never reach state n from i = 0 and that ρn = 1 since we have already
reached it. Let us introduce a new variable yi = ρi − ρi−1. Then

yi+1 = ρi+1 − ρi

= ρi+1 − λ−i ρi−1 − (1− λ−i − λ+i )ρi − λ+i ρi+1

= (1− λ+i )(ρi+1 − ρi) + λ
−
i (ρi − ρi−1)

= (1− λ+i )yi+1 + λ
−
i yi ,
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and hence yi+1 =
λ−i
λ+i

yi. Since ρ0 = 0 we have y1 = ρ1 and we obtain

yi = ρ1

i

∏
k=1

λ−k
λ+k

.

Furthermore, ∑
j
i=1 yi = ρ j − ρ0 = ρ j, and specifically, ∑i yi = ρn − ρ0 = 1

so that
ρ1 =

1

1 + ∑
n−1
j=1 ∏

j
k=1

λ−k
λ+k

.

Moreover,

ρi = ρ1

(
1 +

i−1

∑
j=1

j

∏
k=1

λ−k
λ+k

)

=
1 + ∑

i−1
j=1 ∏

j
k=1

λ−k
λ+k

1 + ∑
n−1
j=1 ∏

j
k=1

λ−k
λ+k

. (9.10)

we thus obtain
ρA = ρ1 =

1

1 + ∑
n−1
i=1 ∏

i
k=1

λ−k
λ+k

(9.11)

Moreover, the ratio between ρA = ρ1 and ρB = 1− ρn−1 becomes simply

ρA
ρB

=
n−1

∏
i=1

λ−i
λ+i

(9.12)

If this fraction is larger then 1 and ρA > ρB then type A is said to be risk
dominant. risk dominant

If λ−k = λ+k for all k, then the fixation probabilities simplify to ρi =
i
n .

Hence, if the fitness for both species is always equal, the fixation probabil-
ity is simply ρi =

i
n , and we refer to this as the neutral fixation probability. If neutral selection

a species has a higher fixation probability than neutral it has an evolutionary
advantage and if it is lower an evolutionary disadvantage. evolutionary

advantage

In general, whether fixation probabilities are larger then neutral, or
whether a strategy is risk dominant does not depend on the intensity of
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selection. We denote by

Fi(β) =
i

∏
k=1

λ−k
λ+k

where β represent the intensity of selection. If the intensity of selection
β = 0, we expect any evolutionary process to be neutral (since otherwise
there would effectively be selection). Hence, we obtain that for β = 0 that

ρA =
1
n
=

1
1 + ∑i Fi(β)

so that 1 + ∑i Fi(β) = n. Then for small β using a Taylor expansion to beTaylor series

evolutionary advantageous ρA > 1/n comes down to

n < 1 +∑
i
Fi(β) ≈ 1 +∑

i
Fi(0) +β∑

i
F ′i (0) = n +β∑

i
F ′i (0)

so that effectively if ∑i F ′i (0) < 0 then ρA > 1/n. Hence, to be evolutionary
advantageous is independent of the intensity of selection. Similarly for risk
dominance, we obtain that Fn−1(0) = 1 so that strategy A is risk dominant
if F ′(0) > 0 for small β. Hence, in general, these properties do not depend
on the intensity of selection.

This neutral fixation probability is also valid for the Wright-Fisher pro-
cess. However, the analysis of the fixation probability is more complex for
the Wright-Fisher process, and we will not include it here (Sella and Hirsh,
2005; Imhof and Nowak, 2006).

Moran process

For the Moran process it is customary (Nowak, Sasaki, Taylor et al., 2004)
to specify the fitness aslinear Moran

payoff

fA(~n) = 1−β+βFA(~n), (9.13a)

fB(~n) = 1−β+βFB(~n), (9.13b)

where β represents the intensity of selection and FA(~n) and FB(~n) are the
payoffs for type A and B, which for the matrix given in Eq. (9.7) gives

FA(~n) =
nA − 1
n− 1

a +
nB

n− 1
b,

FB(~n) =
nA

n− 1
c +

nB − 1
n− 1

d.
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The transition probabilities λ±i are then

λ−i =
nB fB(~n)

n〈 f 〉
nA
n

=
(n− i) fB(i)

i fA(i) + (n− i) fB(i)
i
n

λ+i =
nA fA(~n)

n〈 f 〉
nB
n

=
i fA(i)

i fA(i) + (n− i) fB(i)
n− i

n

and the ratio becomes
λ−i
λ+i

=
fB(i)
fA(i)

. (9.14)

Now for generalβ it is difficult to analyse the product ∏
n−1
i=1

λ−i
λ+i

. In the limit

of “weak selection” however, i.e. as β→ 0, the analysis becomes tractable.
In that case, we obtain by a simple Taylor approximation

λ−i
λ+i
≈ 1 +β

∂
fB(i)
fA(i)

∂β
= 1−β(FA(i)− FB(i)).

By ignoring contributions β2 (because β→ 0) in the product, we obtain

n−1

∏
i=1

λ−i
λ+i
≈ 1−β

n−1

∑
i=1

(FA(i)− FB(i)). (9.15)

The difference FA(i)− FB(i) can be written as

FA(i)− FB(i) =
1

n− 1
(αi +ω) (9.16)

where α = (a − b)− (c − d) and ω = n(b − d) + d − a. In that case, the
sum in Eq. (9.15) is relatively straightforward to calculate, and we obtain

k

∑
i=1

(FA(i)− FB(i)) = ω
k

n− 1
+

1
n− 1

k

∑
i=1
αi

= ω
k

n− 1
+α

k(k + 1)
2(n− 1)

(9.17)

The ratio between the fixation probabilities is then

ρA
ρB

=
n−1

∏
i=1

λ−i
λ+i
≈= 1−β(ω+α

n
2
). (9.18)
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Hence, if ω+α n
2 > 0 then a single A mutant has a higher probability of

fixation as a single B mutant, and type A is risk dominant, which is the case
if

a(n− 2) + bn > d(n− 2) + cn (9.19)

which for large n becomes approximately a + b > d + c. The fixation prob-
ability ρA itself is, from Eq. (9.11),

ρA =
1

1 + ∑
n−1
k=1 ∏

k
i=1

λ−i
λ+i

. (9.20)

The product is

k

∏
i=1

λ−i
λ+i
≈ 1−β

(
ω

k
n− 1

+α
(k + 1)k
2(n− 1)

)
(9.21)

and so the sum is

n−1

∑
k=1

k

∏
i=1

λ−i
λ+i
≈

n−1

∑
k=1

[
1−β

(
ω

k
n− 1

+α
(k + 1)k
2(n− 1)

)]
= (n− 1)− n(n− 1)βω

2(n− 1)
− βα

2(n− 1)
(n− 1)n(n + 1)

3

= (n− 1)− nβω
2
−βα n(n + 1)

6
.

The fixation probability thus becomes

ρA ≈
1

1 + (n− 1)− nβω
2 −

βαn(n+1)
6

(9.22)

=
1
n

1

1− βω
2 −

βα(n+1)
6

(9.23)

Now we are interested in knowing when the fixation probability ρA > 1/n
is greater than neutral. This leads to 3ω+α(n+ 1) > 0, and so whether the
fixation probability is larger than neutral is independent of the intensity of
selection. For large n this amounts to

2b + a > 2d + c (9.24)
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Pairwise comparison

The ratio between the transition probabilities λ±i takes a much simpler,
more elegant form for the pairwise comparison. From Eq. (9.3) we obtain

λ−i =
i
n

n− i
n

1
1 + exp(−β( fA − fB))

λ+i =
i
n

n− i
n

1
1 + exp(β( fA − fB))

.

The ratio between the transition probabilities therefore becomes

λ−i
λ+i

= e−β( fA− fB). (9.25)

For the pairwise comparison, we usually take as fitness simply the payoff, Pairwise fitness

so that fA = FA and fB = FB. The product of the ratio’s is also quite simple

k

∏
i=1

λ−i
λ+i

= exp

(
−β

k

∑
i=1

( fA − fB)

)
, (9.26)

and this holds not only for weak selection, but for all intensities of selec-
tion. We have already calculated this sum earlier in Eq. (9.17), and so we
obtain

k

∏
i=1

λ−i
λ+i

= exp
(
−βω k

n− 1
+α

k(k + 1)
2(n− 1)

)
.

Notice that for weak selectionβ→ 0 we obtain the exact same results since
e−β∆F ≈ 1−β∆F. The ratio between ρA and ρB is therefore

ρA
ρB

= exp
[
−β

(
ω+α

n
2

)]
,

and type A is risk dominant wheneverω+α n
2 > 0, resulting in the same

inequality as for the Moran process in Eq. (9.19). However, the result
is valid for all intensities of selection for the pairwise comparison, and
whether a strategy is risk dominant is independent of the intensity of se-
lection.

The actual fixation probability ρA is

ρA =
1

1 + ∑
n−1
k=1 exp

(
−βω k

n−1 +α k(k+1)
2(n−1)

) . (9.27)
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For large n we can approximate the sum by an integral, while for weak
selection β→ 0 we arrive at the same result as for the Moran process.

Notice that for the Moran process, we can also take as fitnessexponential Moran
fitness

fA(~n) = eβFA(~n), (9.28a)

fB(~n) = eβFB(~n), (9.28b)

with β again the intensity of selection. In that case the transition probabil-
ities λ±i are

λ−i =
(n− i)eβFA(~n)

(n− i)eβFA(~n) + ieβFB(~n)
i
n

,

λ+i =
ieβFA(~n)

(n− i)eβFA(~n) + ieβFB(~n)
n− i

n
.

Notice that although this is different to the pairwise comparison process,
the ratio between the transition probabilities is also

λ−i
λ+i

= e−β(FA(~n)−FB(~n)). (9.29)

Hence, using Eq. (9.28) instead of Eq. (9.13) as fitness, the Moran process
and the pairwise comparison process are equivalent (Traulsen, Shoresh
and Nowak, 2008) as far as the fixation probability is concerned. This is
surprising since we needed information about all agents for the Moran pro-
cess, while for the pairwise comparison, we only used local information,
yet the two behave similarly.

9.1.3 Infinite population size

When the population size goes to infinity, the changes are essentially con-
tinuous, and we denote by xs = ns

n the relatively frequency of type s and
by x the vector of x = (x1, x2, . . . , xq). The fitness of type s is fs(x) similar
as before, while the average fitness is 〈 f 〉. Let us assume that all agents re-
produces at some same basic rate α and die at some rate β, and that these
rates are proportional to the number of agents (corresponding to basic ex-
ponential growth). In addition, the reproduction of some type s is based on
its fitness fs(x). Furthermore, let us assume that the rate of reproduction is
proportional to some time interval ∆t. Then the number of agents at time
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t + ∆t
ns(t + ∆t) = ∆t(α + fs(x)−β)ns(t) + ns(t),

and so by taking the limit ∆t→ 0 we obtain that

lim
∆t→0

ns(t + ∆t)− ns(t)
∆t

= ṅs = (α + fs(x)−β)ns. (9.30)

Since ns(t) = xs(t)n(t), we have that ṅs = ẋsn + xsṅ so that

ẋsn = ṅs − xsṅ. (9.31)

Now since n = ∑s ns we simply have that

ṅ = ∑
s

ṅs

= ∑
s
(α + fs(x)−β)ns

= (α + 〈 f 〉 −β)n. (9.32)

Then plugging Eq. (9.32) and Eq. (9.30) into Eq. (9.31) we obtain

ẋsn = (α −β)(ns − xsn) + fs(x)ns − 〈 f 〉xsn

so dividing by n we arrive at

ẋs = ( fs(x)− 〈 f 〉)xs. (9.33)

This equation is known as the replicator equation (Hofbauer and Sigmund, replicator equation

1998).

In the case of game theory, we assume that each type s will play a cer-
tain (mixed) strategy ps. The average strategy is then p(x) = ∑s xs ps, so
that the average payoff for type s is fs(x) = p>s Ap, while the average payoff
is then 〈 f 〉 = p>Ap, so that the replicator equation becomes

ẋs = (p>s Ap(x)− p>(x)Ap(x))xs. (9.34)

If we assume each type corresponds to a pure strategy, this simplifies fur-
ther. For simplicity, we can assume that A is then a q× q matrix, and that
each choice coincides with a type. Hence, the strategy ps = es (where
es = δsi is the standard basis vector), and a type s always plays choice s. In
that case, the average strategy is simply p(x) = x. Hence, we then arrive

215



9 Evolution of cooperation

at
ẋs = (e>s Ax− x>Ax)xs. (9.35)

Now there exists a certain correspondence between Nash equilibria,
evolutionary stable strategies (ESS) and the stability of rest points of this
replicator equation. In this case the population state x is used as the mixed
strategy in the definition of a Nash equilibrium. Then the following can be
proven (Hofbauer and Sigmund, 1998).

Theorem 9.3. In the following, statements of dynamical systems refer to Eq. (9.35).

1. If x is Nash, then x is a fixed point.

2. If x is strictly Nash, then x is asymptotically stable.

3. If x is a stable fixed point, then x is Nash

4. If x is ESS, then x is asymptotically stable

5. If x is ESS and in interior, then x is globally attracting.

We can also explicitly analyse how the finite population size models
behave for large n to see how the finite and infinite population models
are connected (Traulsen, Claussen and Hauert, 2005; Traulsen, Nowak and
Pacheco, 2006). In order to develop this derivation, it is easiest to take the
Moran process and pairwise comparison for the 2× 2 case, so that we again
only have A and B players. In that case the replicator equation reduces to

ẋ = x(1− x)( fA(x)− fB(x)), (9.36)

where x = xA and 1− x = xB.
Let us denote by P(i, τ) the probability there are i A players at time τ ,

which then respects the recursion

P(i, τ + 1) = P(i, τ) + P(i− 1, τ)λ+i−1+

P(i + 1, τ)λ+i+1 − P(i, τ)(λ+i + λ−i ). (9.37)

We will now see how this probability distribution P(i, τ) changes for large
n. In order to do so, we need to introduce a few equivalents. We rescale
time as t = τ

n and denote by x = i
n the fraction of A players. The prob-

ability there are i A players then becomes nP(i, τ) = ρ(x, t), while the
transition probabilities become simply λ±i = λ±(x). From Eq. (9.37) we

216



Game theory

then obtain

ρ(x, t + 1/n)− ρ(x, t) = ρ(x− 1/n, t)λ+(x− 1/n)+

ρ(x + 1/n, t)λ−(x + 1/n)− ρ(x, t)(λ+(x) + λ−(x)). (9.38)

For approximating the quantities ρ(x, t + 1/n), ρ(x ± 1/n, t) and λ∓(x ±
1/n) we will use a Taylor expansion. We then arrive at

ρ(x, t + 1/n) = ρ(x, t) +
1
n

∂ρ(x, t)
∂t

ρ(x± 1/n, t) = ρ(x, t)± 1
n

∂ρ(x, t)
∂x

+
1

2n2
∂2ρ(x, t)

∂x2

λ∓(x± 1/n) = ρ(x, t)± 1
n

∂λ∓(x)
∂x

+
1

2n2
∂2λ∓(x)

∂x2

Plugging these approximations into Eq. (9.38) and collecting terms propor-
tional to 1/n gives

1
n

(
−ρ(x, t)

∂x
λ+(x)− ρ(x, t)

∂λ+(x)
∂x

+

ρ(x, t)
∂λ−(x)

∂x
+

∂ρ(x, t)
∂x

λ−(x)

)

= − 1
n

∂

∂x
ρ(x, t)(λ+(x)− λ−(x))

Similarly collecting terms for 1/n2 gives

1
2n2

∂2

∂x2ρ(x, t)(λ+(x) + λ−(x))

so that we finally arrive at

∂ρ(x, t)
∂t

= − ∂

∂x
ρ(x, t)(λ+(x)− λ−(x))+

1
2

∂2

∂x2ρ(x, t)
(λ+(x) + λ−(x))

n
(9.39)

which is the Fokker-Planck equation. It describes the dynamics of the prob- Fokker-Planck

ability distribution ρ(x, t) throughout time. The first term is usually called
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the drift term (indicating directionality) and the second term the diffusion
term (indicating a random diffusion in all directions). Now letting n→ ∞,
we obtain

∂ρ(x, t)
∂t

= − ∂

∂x
ρ(x, t)(λ+(x)− λ−(x)). (9.40)

We use as initial condition ρ(x, t) = δ(x− x0) the Dirac deltafunction, soδ Dirac delta

there the initial relatively frequency of type A players is x0 and there is
no uncertainty with respect to the initial condition. Indeed then ρ(x, t) =

δ(x− x(t)) for all time t. By definition of the Dirac delta function we obtain∫
xρ(x, t)dx =

∫
xδ(x− x(t))dx = x(t) so that

∂x(t)
∂t

=
∫ 1

0
x

∂ρ(x, t)
∂t

dx (9.41)

= −
∫ 1

0
x

∂

∂x
δ(x− x(t))(λ+(x)− λ−(x))dx (9.42)

and by partial integration we obtain that

ẋ = λ+(x)− λ−(x). (9.43)

Working out λ±(x) for the Moran process yields

λ−(x) = x(1− x)
fB(x)

x fA(x) + (1− x) fB(x)

λ+(x) = x(1− x)
fA(x)

x fA(x) + (1− x) fB(x)

with finesses indicated as in Eq. (9.13) this leads to

ẋ =
x(1− x)(FA(x)− FB(x))

1
β − 1 + xFA(x) + (1− x)FB(x)

(9.44)

which yields an adjusted replicator equation with fitness equal to payoff
(Traulsen, Claussen and Hauert, 2005). For the pairwise comparison, work-
ing out yields

λ+(x)− λ−(x) = x(1− x)
expβ(FA − FB)− 1
expβ(FA − FB) + 1

,
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which is the definition of the tangent hyperbolic, resulting in

ẋ = x(1− x) tanh
(
β

2
(FA − FB)

)
. (9.45)

For small β this reduces to exactly the replicator equation when taking
the first order Taylor expansion, with fitnesses equal to payoff (Traulsen,
Nowak and Pacheco, 2006). The first order approximation of the tangent
hyperbolic function yields tanhβ/2∆ = β/2∆ so that we arrive at

ẋ =
β

2
x(1− x) (FA − FB) ,

which is exactly the replicator for a rescaled time t′ = tβ/2. Hence, the
replicator equation is consistent with the finite population models. More-
over, for 2× 2 games a strategy is risk dominant if x∗ < 1/2, while is has
an evolutionary advantage (ρA > 1/n) if x∗ < 1/3 (Nowak, Sasaki, Taylor
et al., 2004).

9.1.4 Prisoner’s dilemma

Let us briefly look at the prisoner’s dilemma, which corresponds to a pay- prisoner’s dilemma

off matrix with

A =

(C D
C R S
D T P

)
. (9.46)

The prisoner’s dilemma corresponds to T > R > P > S. Here R (re-
ward) corresponds to the payoff when both agents cooperate, while if the
one agents defects and the other cooperates he receives T (temptation) and
the other receives S (sucker), while if both defect, both get a payoff of P
(punishment). For our earlier example we had R = −1, T = 0, S = −5
and P = −4.

Let us start by looking at the Nash equilibrium and the ESS. Clearly, the
strategy x = (0, 1) (always defect) is a (strict) Nash equilibrium, which can
be easily seen from

x>Ax = (0, 1)
(

R S
T P

)(
0
1

)
= P,
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while for y = (p, 1− p) 6= x we obtain

y>Ax = (p, 1− p)
(

R S
T P

)(
0
1

)
= Sp + (1− p)P,

and since S < P, we obtain that y>Ax < x>Ax, and hence x is a strict
Nash equilibrium, hence it is also an ESS. In fact, it is also the unique Nash
equilibrium (and ESS). Let y = (p, 1− p) be any other strategy. Then

y>Ay− x>Ax = p2(R− T) + p(1− p)(S− P) < 0

because T > R and P > S.
Let us look at this from the viewpoint of a finite population. Assume we

have n agents, of two types only: those who always cooperate (AllC) andAllC

those who always defect (AllD). Let us assume there are nC cooperatorsAllD

and nD defectors. The payoff for a cooperator is then

FC(~n) = R
nC − 1
n− 1

+ S
nD

n− 1

since if a cooperator is playing against a cooperator the payoff is R and
against a defector it is S. For a defector the payoff is then

FD(~n) = T
nC

n− 1
+ P

nD − 1
n− 1

.

The difference in payoff is then

FC(~n)− FD(~n) =
nC

n− 1
(R− T)+

nD
n− 1

(S− P) +
1

n− 1
(P− R),

which is always negative because T > R > P > S, and so FC(~n) < FD(~n),
consistent with the Nash equilibrium. We hence expect defectors to gener-
ally win. The average payoff is then

〈F〉 = FD(~n)
nd
n

+ FC(~n)
nc

n
.

Let us analyse the fixation probability ρC of a single cooperator mutant
in a population of defectors. Let us first focus on the ratio ρC/ρD to investi-
gate which of the strategies is risk dominant. By Eq. (9.19) cooperators are
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risk dominant if
R(n− 2) + Sn > P(n− 2) + Tn,

which for large n is R + S > P + T. This is neither the case for finite
population size nor for large n given that T > R > P > S. Cooperators
have an evolutionary advantage whenever ρA > 1/n which by Eq. (9.24) is
the case for large n if 2S + R > 2P + T, which contradicts T > R > P > S,
so that cooperators indeed never have an evolutionary advantage.

The replicator equation is then

ẋ = x(1− x)(Rx + S(1− x)− Tx− P(1− x))

= x(1− x)((1− x)(S− P) + x(R− T)),

which might have a fixed point (besides x∗ = 0 and x∗ = 1) at

x∗ =
P− S

R− T + P− S
.

Indeed, for this fixed point to exist we must have 0 < x∗ < 1, which is
never the case. Hence, there are only two fixed points, only one of which
is stable, namely x∗ = 0. Hence, for any initial population, the population
evolves towards only defectors.

An alternative specification of the prisoner’s dilemma, which is also
often employed is the following. Each agent can cooperate by providing a
benefit b > 0 to his partner at a cost of c < b to himself. This corresponds b benefitc cost
to the following payoff matrix

A =

( C D
C b− c −c
D b 0

)
. (9.47)

Again, only defecting is a strict Nash equilibrium and the only evolution-
ary stable strategy. Cooperating is risk dominant if

b− 2c > b (9.48)

which is clearly never the case. The replicator equation becomes

ẋ = x(1− x)((b− c)x− c(1− x)− bx) = −cx(1− x) (9.49)

so that only only x∗ = 1 is a stable fixed point. Again, any initial popula-
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C D

C b − c −c
D b 0

Agents either
Cooperate or
Defect

Fig. 9.2 Prisoner’s dilemma

tion will evolve towards only defectors.
Hence, on all accounts cooperation is never evolutionary stable or ad-

vantageous. It is quite unlikely cooperators ever successfully invade a pop-
ulation of defectors and even less likely to become fixated in a population
of defectors. On the other hand, defectors will easily invade a population
of cooperators, and are likely to become fixated in the population. In the
limit of large population size the evolutionary trend is always towards the
defectors. In reality however, we do observe cooperation. Hence, the ques-
tion is, how can cooperation ever have evolved?

9.2 Towards cooperation

Various mechanisms for explaining the evolution of cooperation have been
suggested (Nowak, 2006b), such as kin selection (Maynard Smith, 1982;
Hamilton, 1964), reciprocity (Axelrod, 1984) or group selection (Wilson,
1975). We will first explain briefly the concept of direct reciprocity and
then introduce the concept of indirect reciprocity.

9.2.1 Direct reciprocity

Direct reciprocity—or simply reciprocity for short—is based on the idea ofdirect reciprocity

“you scratch my back, I scratch yours”. That is, if I help you, you should
return the favour by helping me. This comes down to playing multiple
rounds of the prisoner’s dilemma. This is also known as the iterated pris-
oner’s dilemma (IPD). There is a plethora of different strategies to play an
IPD, but the one strategy that performs outstanding versus a wide array
of different strategies is tit-for-tat (TFT), which embodies the principle oftit-for-tat (TFT)

direct reciprocity (Axelrod, 1984).
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Tit-for-tat simply does exactly what its opponent does and starts out
cooperating on the first round. For example, if TFT plays against AllD (a AllD

player who defects on every round), TFT will cooperate on the first round,
but will subsequently defect, because AllD defects. In this context it is also
commonly demanded that R > (T + P)/2 so that cooperation has a higher
reward than alternating between defecting and cooperating. Notice that
for the specification using benefits b and costs c in Eq. (9.47) this is always
the case. Let us use this specification to look how TFT evolves against AllD.

First we have to decide how many rounds k of the prisoner’s dilemma
there will be played. This is not exactly trivial. We know that for a single
round only defecting is stable. So, if we know how many rounds there will
be, it should be better to defect on the last round. But then the second to
last round can be considered as the last round, and working our way back
in that way, it should be better to always defect again. Hence, it is usually
supposed that there is a certain probability w to have another round. This
is sometimes poetically called “the shadow of the future”.

The number of rounds then follows a geometric probability distribu-
tion, with an expected number of rounds of 〈k〉 = 1/(1 − w). If a TFT
player meets another TFT player, they continue to cooperate, since they
start out cooperatively and then do what the other ones does (i.e. cooper-
ate), and so both receive an expected payoff of 〈k〉(b− c). If a TFT player
plays against AllD, the TFT player will receive once a payoff of −c after
which he will also always defect, while the AllD player will then receive
once a payoff of b. Two AllD players will never receive any payoff. The
expected payoffs for TFT versus AllD is then as follows expected payoff

A =

( TFT AllD
TFT 〈k〉(b− c) −c
AllD b 0

)
. (9.50)

Analysing when TFT is a strict Nash equilibrium, we arrive at

b
c
>

1
w

(9.51)

Hence, if the probability to continue another round is large enough, or
the other way around if the benefit-cost ratio is large enough, cooperation benefit-cost ratio

has a chance to evolve. However, defecting will also always stay a Nash
equilibrium since −c < 0. TFT is risk dominant if b

c > 2−w
w , for large n.

If we look at the fixation probability of TFT this is larger then neutral if
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b
c > 3−2w

w .

One particular problem for TFT however is that in the face of errors it
might end up defecting (Nowak and Sigmund, 1993). In order to analyse
this let us look at what combination of cooperation and defecting two TFT
players will end up. Let us denote by q = (qCC , qCD , qDC , qDD) the proba-
bilities to cooperate. Then qCC is the probability to cooperate after a round
in which the agent himself cooperated and his opponent cooperated, qCD
the probability the cooperate after a round in which the agent himself de-
fected while his opponent defected, etc. . . . TFT then corresponds to the
strategy q = (1, 0, 1, 0).

Now let us look how two players with strategies q and q′ end up in what
type of situations. Let us denote by M the matrix of transition probabili-
ties for the four different states CC, CD, DC and DD, so that for example
MCD,DC represent the probability to move from state CD to state DC. This
transition matrix is then

M =

 qCCq′CC qCC(1−q′CC) (1−qCC)q′CC (1−qCC)(1−q′CC)

qCDq′DC qCD(1−q′DC) (1−qCD)q′DC (1−qCD)(1−q′DC)

qDCq′CD qDC(1−q′CD) (1−qDC)q′CD (1−qCD)(1−q′CD)

qDDq′DD qDD(1−q′DD) (1−qDD)q′DD (1−qDD)(1−q′DD)

 . (9.52)

Let us denote the probability to be in a certain state with π . The proba-
bilities then change according to π(t + 1) = Mπ(t) = Mtπ(0). We are
interested in the stationary state π = limt π(t) = Mπ . If the game will
be iterated long enough we will be in the stationary state and the payoff
for a certain strategy q is then Fq = ∑s πs As. So, for two TFT players this
becomes

M =


CC CD DC DD

CC 1 0 0 0
CD 0 0 1 0
CD 0 1 0 0
DD 0 0 0 1

.

From this one can observe that if somehow one of the two TFT players
defects, that the two TFT players alternatively defect. They alternate then
between states CD and DC, so that each take turn in defecting. In fact,
let us suppose that with some probability ε a TFT player defects while he
didn’t intend to, which corresponds to strategy q = (1−ε, 0, 1−ε, 0). The
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transition matrix is then

M =


CC CD DC DD

CC (1−ε)2 (1−ε)ε ε(1−ε) ε2

CD 0 0 1−ε ε

CD 0 1−ε 0 ε

DD 0 0 0 1

.

This transition matrix M has a single absorbing state, so that for all ε > 0
two TFT players (with errors) will end up defecting at stationarity.

For this reason often also another strategy is considered, which is more
stable in the presence of errors, namely the Win-Stay-Loose-Shift (WSLS) Win-Stay-Loose-

Shift
(WSLS)strategy (Nowak and Sigmund, 1993). The idea is that whenever the agent

is doing well, it will continue to make its current choice, and if it is doing
not so well it will switch. Without errors this corresponds to the strategy
q = (1, 0, 0, 1). This yields the transition matrix for two WSLS players

M =


CC CD DC DD

CC 1 0 0 0
CD 0 0 0 1
CD 0 0 0 1
DD 1 0 0 0

.

This matrix has as the state CC as the single absorbing states and hence
two WSLS players are expected to end up cooperating, regardless of the
initial condition.

Let us see how the WSLS strategy does in the face of errors. This then
corresponds to the strategy q = (1 − ε, 0, 0, 1 − ε). The corresponding
transition matrix is then

M =


CC CD DC DD

CC (1−ε)2 (1−ε)ε ε(1−ε) ε2

CD 0 0 0 1
CD 0 0 0 1
DD (1−ε)2 (1−ε)ε ε(1−ε) ε2

.

The stationary probability to cooperate is then

πCC =
(1−ε)2

2ε(1−ε) + 1
≈ 1− 4ε
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which stays near 1 for small ε so that indeed the WSLS strategy stays co-
operative when faced with small errors. Hence, the WSLS strategy is then
quite robust with respect to these type of errors (Nowak and Sigmund,
1993).

In fact, for the iterated prisoner’s dilemma with an infinite number
of rounds there exists a strategy that dominates all other strategies, the
so-called zero-determinant strategies (Press and Dyson, 2012). However,
these zero-determinant players do not necessarily always cooperate amongst
each other, and are not evolutionary stable (Hilbe, Nowak and Sigmund,
2012). For example the WSLS strategy actually obtains a better payoff, be-
cause they end up cooperating with each other (Adami and Hintze, 2012).

9.2.2 Indirect reciprocity

Humans have a tendency however to also cooperate in contexts beyond
kin, group or repeated interactions. It is believed that some form of indi-
rect reciprocity can explain the breadth of human cooperation (Nowak and
Sigmund, 2005). Whereas in direct reciprocity the favour is returned by the
interaction partner, in indirect reciprocity the favour is returned by some-
body else, which usually involves some reputation. It has been theorized
that such a mechanism could even form the basis of morality (Alexander,
1987). Additionally, reputation (and the fear of losing reputation) seems to
play in important role in maintaining social norms (Fehr and Fischbacher,
2004; Elias and Scotson, 1994; Friedkin, 2001).

In indirect reciprocity often a slightly different game is played, namelyindirect reciprocity

that of donation (Nowak and Sigmund, 2005). Instead of that a pair in-
teracts both ways, one agent is selected to be the donor and the other the
recipient. The donor may decide to give a benefit b to the recipient at a
cost of c to himself. Hence, the recipient cannot immediately return the
favour. Assuming random pairing, it will take some while before the same
pair is chosen again for interaction, so that this reduces the possibilities for
direct reciprocity. Nonetheless, this game reduces to our earlier game. So,
even though we may speak of donor and recipient from time to time, the
underlying game remains the same.

Usually indirect reciprocity is modelled using some form of reputation,
which is often assume to be binary: agents are either good (G) or bad (B).
We will consider indirect reciprocity of increasing complexity. The first
order scheme is only based on the action of the donor: cooperate or defect.
The second order scheme takes into account the reputation of the recipient.
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G B

C G G
D B B

C D

Reputation of recipientAction of donor

New reputation

Action

Fig. 9.3 First order indirect reciprocity

For example, it might be good to defect against a bad agent whereas this
would be bad against a good agent. The third order scheme also takes into
account the reputation of the donor. After all, perhaps agents should only
care about their own reputation, not about the reputation of others.

First order

In the simplest framework, the first order scheme, we assume that agents first order

cooperate with “good” agents and defect with “bad” agents (Nowak and
Sigmund, 1998b), since the other way around does not make much sense.
This is similar to the so-called image scoring strategy (Nowak and Sig-
mund, 1998a). If an agent cooperates he gets a good reputation, and if an
agent defect he gets a bad reputation. In this simplest model, we obtain the
following dynamics.

Let ri(t) ∈ {−1, 1} be the reputation of agent i in round t, so that ri(t) =
−1 denotes a bad reputation and ri(t) = 1 denotes a good reputation. Then
we randomly select an agent i for donation to an agent j. The reputation
of agent j is r j(t) and if r j(t) = 1 agent i will help and his reputation will
become ri(t + 1) = 1, but if r j(t) = −1 agent i will defect because j has a
bad reputation, but he also gets a bad reputation because he has defected
and so ri(t + 1) = −1. In short, ri(t + 1) = r j(t). Let us assume all players
have initially a good reputation so that ri(0) = 1 for all i. Then it is clear
that ri(t) = 1 for all t and all i in the absence of any other players.

This is summarized in Fig. 9.3. Here the upper table denotes what the
new reputation of the donor will be given his action. In this case this does
not depend on the reputation of the recipient. Regardless of whether the
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recipient has a good or bad reputation, if the donor defects he will get a
bad reputation. The lower table denotes what action the donor should
take given the reputation of the recipient.

Now let us introduce some defectors. Let us assume there is a pro-
portion of xD = nD/n defectors and xC = nC/n discerning cooperators
(those that cooperate or not based on the reputation). Since a defector will
defect by default, he will always get a bad reputation if he is chosen as a
donor. A discerning cooperator will then get a bad reputation if he defects
against anybody, including defectors. Let us denote by nG

C (t) the num-
ber of good agents amongst cooperators and by nG

D(t) the number of good
agents amongst defectors. We denote by pC(t) = nG

C (t)/nC the probability
a cooperator has a good reputation, and similarly so for the defectors de-
note pD(t) = nG

D(t)/nD. The probability that the number of good agents
amongst cooperators changes is then

λ− = Pr(∆nG
C (t) = −1) = xC pC ((1− pC)xC + (1− pD)xD)

λ+ = Pr(∆nG
C (t) = 1) = xC(1− pC) (pCxc + pDxD) .

Then letting n → ∞ (similar to the derivation of Eq. (9.39)) we obtain the
reputation dynamicsreputation

dynamics

ṗC = λ+ − λ− = (pD − pC)xCxD .

Defectors can only get a bad reputation, and never regain a good reputa-
tion since they will never cooperation. Working out similarly we obtain
that

ṗD = −xD pD (9.53)

The proportion of defectors that have a good reputation thus exponentially
goes to zero, and pD(t) = e−xDt. Substituting this solution in Eq. (9.2.2) we
obtain as solution

pC(t) =
1

1− xc
e−xC xDt − xc

1− xc
e−xDt, (9.54)

and so also pC(t) → 0 for t → ∞. So, even though these cooperators dis-
cern quite well the defectors (the probability they have a good reputation
quickly goes to zero), the cooperators themselves will also end up with a
bad reputation. Hence, in the end there won’t be any cooperation amongst
these cooperators.
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If we introduce unconditional cooperators (those who always cooper-
ate irrespective of the reputation), the average reputation of the discern-
ing cooperators will be higher. This still leads to problems however since
the discerning cooperators and unconditional cooperators are evolution-
ary neutral, which might lead to invasion of defectors still (Nowak and
Sigmund, 1998b).

Second order

Given that the first order scheme is unable to maintain a high reputa-
tion for cooperators themselves, it makes sense to discern whether some-
body defects against somebody of a bad reputation or not (Brandt and
Sigmund, 2004). After all, if somebody defects against somebody with a
bad reputation this should not be punished by giving that person also a
bad reputation. This was also suggested in the literature and is similar to
the standing strategy (Leimar and Hammerstein, 2001; Panchanathan and
Boyd, 2003), although experimental evidence suggested the simpler first
order scheme (image scoring) prevailed among humans (Milinski, Sem-
mann, Bakker et al., 2001).

So, in the second order scheme we take into account the reputation of second order

the recipient in order to determine whether cooperation or defection is jus-
tified. In particular, it allows to keep a good reputation when defecting
against somebody with a bad reputation.

Denote again by pC = nG
C/nC the proportion of agents with a good

reputation amongst the discriminating cooperation and pD = nG
D/nD the

same among defectors. We denote by Kxy ∈ {0, 1} if the new reputation
should be good (Kxy = 1) or bad (Kxy = 0) given the reputation of the re-
cipient x (good or bad) and the action y (cooperate or defect). For example,
if KGC = 1 = G this indicates if an agent cooperates with an agent of a good
reputation, he should get a good reputation. We denote by Zx if one should
cooperate or defect in a certain situation. For example, if ZG = 1 = C then
agents should cooperate with those with a good reputation. We abbreviate
KxZx = Kx. The change rates are then given by

Pr(∆nG
C = −1) =xC pC

(
(xC pC + xD pD)(1− KG)+

(xC(1− pC) + xD(1− pD))(1− KB)
)

Pr(∆nG
C = 1) =xC(1− pC)

(
(xC pC + xD pD)(1− KG)+

(xC(1− pC) + xD(1− pD))(1− KB)
)
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leading toreputation
dynamics

ṗC = (xC pC + xD pD)xC(KG − KB) + xC(KB − pC). (9.55)

We would like to have that pC = 1 is a fixed point of these dynamics, so
that if we start with a good reputation for the cooperators that the cooper-
ators retain a good reputation. This implies that

(xC + xD pD)(KG − KB) + (KB − 1) = 0.

If KB = 0 we obtain that pC is only a fixed point for specific values of xC, xD
and pD. Hence, in order for the fixed point to exist for all values, we must
have KG = KB = 1. Obviously, we would also like discerning cooperators
to cooperate, so that ZG = C and we obtain that KGC = G. Suppose that
ZB = C, then an agent would also cooperate with somebody that has a bad
reputation, hence, there is no interest in having a good reputation. So, we
should have ZB = D and KBD = G = 1. Furthermore, the cooperators
should not cooperate with agents that have a bad reputation and so KBC =

B = 0. Likewise, if an agent defect against someone with a good reputation
its reputation should be bad, so KGD = B = 0 since otherwise defecting
will not give you a bad reputation and others continue to cooperate despite
the fact that you have a bad reputation.

Hence, among the 24 = 16 possible strategies, only one seems viable
against defectors. This strategy is denoted in Fig. 9.4. Again, the upper
table represents the new reputation of the donor based on his action and
the reputation of the recipient. In this case, it is only good to cooperate
with a good agent and to defect with a bad agent.

This then gives us the reduced dynamics

ṗC = xC(1− pC). (9.56)

The solution of which is clearly independent of pD , and leads to

p(t) = 1− (1− p(0))e−xCt. (9.57)

Now let us look at whether this fixed point is stable. The derivative at
that point is

∂ ṗC
∂pC

= (xC + xD pD)xc(KG − KB)− xc
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Fig. 9.4 Second order indirect reciprocity

which with KG = KB = 1 becomes −xC ≤ 0, and so the fixed point is
stable.

Now let us look at the defectors. We denote by K′x = KxD. We obtain
then

ṗD = (xC pC + xD pD)xD(K′G − K′B) + xD(K′B − pD). (9.58)

Preferably we would like to have pD = 0 a fixed point. This implies that

(xC pC + xD)(K′G − K′B) + K′B = 0. (9.59)

We already know that KBD = G = 1. Hence, this equality cannot hold for
general xC, pC and xD. So, we cannot expect all defectors to have a bad
reputation.

Now let us see what is a feasible fixed point given K′B = 1 and K′G = 0.
In that case the dynamics reduce to

ṗD = xD(1− pD)− (xC pC + xD pD)xD . (9.60)

The only fixed point is thus

p∗D =
1− xC pC

1 + xD

which for pC = 1 (the globally attracting fixed point for the cooperators)
comes down to

p∗D =
xD

1 + xD
. (9.61)
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The explicit solution for pD(t) is then

pD(t) = p∗D
[
1− e−p∗Dt − (1− p(0)) e−xCt

]
+ pD(0)e−p∗Dt, (9.62)

with p∗D as in Eq. (9.61). Indeed pC(t) → 1 and pD(t) → p∗D for t → ∞ for
all initial conditions.

Assuming that pC(0) = pD(0) = 1, we obtain that pC(t) = 1 for all t
and that

pD(t) = p∗D
(

1− e−p∗Dt
)
+ e−p∗Dt.

Assuming finitesmal games the cumulative payoffs after time t are then as
follows

FC(xC , t) =
1
t

∫ t

0
bxC pC(τ)− c(xC pC(τ) + xD pD(τ))dτ

FD(xC , t) =
1
t

∫ t

0
bxD pD(τ)dτ .

Working this out we obtain

FC(xC , t) = xc(b− c)− cxD p∗D −
c
t

(
1− e−p∗Dt

)
FD(xC , t) = bxD p∗D +

b
t

(
1− e−p∗Dt

)
.

For t → ∞ then of course cooperators cooperate with defectors about p∗D
of the time, and we then obtain

FC(xC) = xc(b− c)− cxD p∗D
FD(xD) = bxD p∗D

The difference can be simplified to

FD(xD)− FC(xD) =
1

1 + xD

(
2bx2

D − (b− c)
)

and the replicator equation becomes

ẋD = xD(1− xD)
1

1 + xD

(
2bx2

D − (b− c)
)

.

The fixed point in the replicator equation between the discerning coop-
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erators and unconditional defectors is then

x∗D =

√
1
2

(
1− c

b

)
. (9.63)

Let us look at the stability of the fixed points. The derivative is

∂ẋD
∂xD

= (1− 2xD)(FD(xD)− FC(xD))+

xD

(1 + xD)2 (2bxD(2− xD) + (b− c)xc) (9.64)

For x∗D = 0 (so x∗C = 1) we obtain ∂ẋD
∂xD

= −(b− c) < 0 equally for x∗D = 1

(so x∗C = 0) we obtain ∂ẋC
∂xD

= −b < 0. Both fixed points are hence stable.
For the fixed point x∗D in Eq. (9.63) we obtain that only the latter term in
derivative (9.64) is non-zero, and it is always positive. Hence, the point x∗D
is unstable. Since c < b this fixed point x∗D > 0 so that discriminating co-
operators are never dominating. However, if x∗D > 2/3 the discriminating
cooperates are evolutionary advantageous, which is the case if b

c > 9, and
they are risk dominant if x∗D > 1/2 which gives b

c > 2.

Now let us look at the situation for relatively small t. We linearise
around t = 0 and we then obtain

FC(xC , t) = xC(b− c)− cp∗D

(
1 + xD −

p∗Dt
2

)
FD(xC , t) = bp∗D

(
1 + xD −

p∗Dt
2

)
In order to find the inner fixed point we have to solve a cubic polynomial,
which isn’t very informative. Instead, let us focus on when FC > FD for
xC = xD = 1/2 in order to determine when the cooperates are risk domi-
nant. This is the case when

b
c
>

18
t
− 1, (9.65)

which is only valid for small t. Then similar to TFT the interaction should
last long enough, or stated otherwise the benefit-cost ratio must be high
enough. Furthermore, we can look at the evolutionary stability of the dis-
cerning cooperators. This means that at xD = 0 the derivative should be
∂ẋd
∂xd

< 0. This amounts to ∂ẋd
∂xd

= −(b− c) < 0 similar as before. Hence, the
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9 Evolution of cooperation

discerning cooperators are still evolutionary stable for small times.

Third order

One of the critiques against the second order scheme was that agents should
only care about their own reputation and the associated rewards (Leimar
and Hammerstein, 2001). Hence, they shouldn’t care about whether some-
body else has a good reputation, but they should cooperate perhaps only
to get a good reputation, and then defect as long as he keeps a good reputa-
tion. So, in the third order scheme we also take into account the reputationthird order

of the donor itself. This allows a plethora of different strategies, with 28

different new reputation schemes and 24 different possible action schemes
(Brandt and Sigmund, 2004; Ohtsuki and Iwasa, 2004). Nonetheless, only a
few strategies make actual sense, similar to the second order scheme (Oht-
suki and Iwasa, 2006).

Let us then denote by K(x, y, Zxy) ∈ {1, 0} the reputation update func-
tion with Z ∈ {1,−1} the action matrix, where x is the reputation of the
donor and y the reputation of the recipient. The action matrix denotes
whether an agent should cooperate or not in a certain situation. For exam-
ple if ZBG = −1 then an agent with a good reputation should defect with
an agent with a bad reputation. So if K(G, G, ZGG) = G and ZGG = 1 = C
this means if both i and j have a good reputation (ri = r j = 1) then i should
cooperate (ZGG = 1) and i keeps his good reputation K(G, G, ZGG) = 1 =

G. We will abbreviate K(x, y, Zxy) = Kxy.

We are interested in knowing how different schemes (different repu-
tation update matrices K and action matrices Z) will perform. As before,
we will analyse the proportion of discerning cooperators that have a good
reputation pC and the proportion of defectors that have a good reputation
pD. We obtain

Pr(∆nG
C (t) = −1) = xC pC [(xC pC + xD pD)(1− K(G, G, ZGG))+

(xC(1− pC) + xD(1− pD))(1− K(G, B, ZGB))]

and

Pr(∆nG
C (t) = 1) = xC(1− pC) [(xC pC + xD pD)K(B, G, ZBG)+

(xC(1− pC) + xD(1− pD))K(B, B, ZBB)]

leading toreputation
dynamics
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Fig. 9.5 Third order indirect reciprocity

ṗC = (xC pC + xD pD) (xC(1− pC)KBG − xC pC(1− KGG)) +

(xC(1− pC) + xD(1− pD)) (xC(1− pC)KBB − xC pC(1− KGB)) . (9.66)

For defectors we obtain a similar result using K′xy = K(x, y, D)

ṗD = (xC pC + xD pD)
(
xD(1− pD)K′BG − xD pD(1− K′GG)

)
+

(xC(1− pC) + xD(1− pD))
(
xD(1− pD)K′BB − xD pD(1− K′GB)

)
. (9.67)

Notice that the only viable second order scheme corresponds to Z·B = D
and Z·G = C and K(·, ·, C) = G and K(·, ·, D) = B, which is indeed consis-
tent with the results here.

Again, we would like that cooperators maintain a good reputation among
each other. This means that p∗C = 1 should be a fixed point, and we arrive
at

0 = ṗC = −x2
C(1− KGG)− xCxD(pD(KGB − KGG) + 1− KGB)

and by using xD = 1− xC and dividing by xC we obtain

(KGG − KGB)(xc(1− pD) + pD)− (1− KGB)) > 0

Notice that setting xc(1− pD) + pD = 0 we obtain that

p∗D =
−xC

1− xC
< 0
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9 Evolution of cooperation

which does not correspond to a valid solution. Hence, if KGB = 1 we
must have KGG = 1. On the other hand, if KGB = 0 then KGG = 1 and
xc(1− pD) + pD = 1 so that pD = 0. Hence, if there are no good defectors
we can allow KGB = 0. However, if there should be some perturbation so
that there are some good defectors and pD > 0 the fixed point shifts. So,
in general we should set KGB = KGG = 1. Furthermore, ZGG = C because
otherwise the population would have a high reputation, but would not
cooperate. Also, K(G, G, D) = K′GG = 0 = B since otherwise defecting
would not be “punished” by assigning a bad reputation. Furthermore,
suppose that ZGB = C. Then a good agent would cooperate with a bad
agent, while not losing his good reputation. In that case it has no value to
have a good reputation, and so ZGB = D.

Again, demanding that the fixed point p∗C = 1 is stable, we arrive at the
following inequality for the derivative

0 ≥ ∂ ṗC
∂pC

∣∣∣∣
pC=1

= x2
C(2KGG − 2KGB − KBG + KBB)− xc(KBB − KGB + 1)

We already know that KGG = KGB = 1 so this reduces to −KBG − KBB(1−
xC) ≤ 0. If KBG = 0 then KBB = 1 or otherwise ṗG

C = 0 and the fixed
point is not stable. However, we would like this stability to be especially
the case for xC = 1, and so we demand that at least KBG = 1 in which case
KBB can be freely chosen. Now suppose that ZBG = −1 = D. Then a bad
player would get a good reputation by defecting against a good player, and
would effectively reward defecting. Hence, ZBG = 1 = C. Furthermore,
suppose K(B, G, D) = G then there would be no reason to cooperate to get
a good reputation again, and so K(B, G, D) = B.

From this analysis we thus obtain the leading eight strategies indicatedleading eight

in Fig. 9.5. For a more elaborate argumentation as to why only these strate-
gies perform well, refer to Ohtsuki and Iwasa (2004, 2006).

Besides demanding that the discerning cooperators have a good rep-
utation, we could also demand that defectors will get a bad reputation.
Hence, we demand that pD = 0 is a fixed point, so that

xCxD pC[K′BG − K′BB] + xDKBB = 0

If K′BB = 1 then K′BG = 0 and xC pC = 1, so that xC = 1 and pC = 1,
and there are effectively no defectors. Hence, K′BB = 0. If K′BG = 1 then
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xC pC = 0 so that there are only defectors, in which case there are no rel-
evant reputations. Hence K′BB = K′BG = 0, and this results in one of the
leading eight strategies. If K′BB = 1 we obtain that pD = xD

1+xD
is a stable

fixed point, assuming pC = 1, consistent with the second order strategy.
So, presumably K′BB = 0 performs better in practice, because it allows to
maintain a bad reputation for the defectors.

We can also analyse the stability of the fixed point pD = 0. This point
is stable whenever

xDxC pC(K′GG − K′GB)− xD(1− K′GB) ≤ 0

From the analysis of the stability of the fixed point pC = 1 we obtained
that K′GG = 0 and K′GB = 1 so that indeed the fixed point 0 is stable.

9.3 Private reputation

In the previous section we saw what type of strategies of indirect reci-
procity can lead to cooperation. However, these reputations are usually
considered as objective. That is, for an agent i all agents know the reputa-
tion of agent i, and all agents have the same view of agent i. This assump-
tion has sometimes been relaxed by assuming only a part of the population
“observes” an interaction, and updates their opinions accordingly. If this
probability of observation becomes too small, reputations are no longer
synchronized, and some mechanism would be necessary to maintain some
coherence.

This is where we get back to dynamical models of social balance, which
might overcome these issues. Although it allows to have private reputa-
tions (i.e. opinions), the dynamics also lead to some coherence. In addi-
tion, it models more explicitly the gossiping process, commonly suggested
to be the foundation upon which reputations are forged. In addition, gos-
siping seems a more natural setting than “observing”, and it was found to
enhance cooperation in various experiments (Sommerfeld, Krambeck and
Milinski, 2008; Sommerfeld, Krambeck, Semmann et al., 2007; Piazza and
Bering, 2008).

Notice that the model Ẋ = XX> is consistent with the leading second
order strategy. Whenever the reputation of player j is good, (i.e. Xi j > 0)
agents cooperate, and whenever it is bad (i.e. Xi j ≤ 0) agents defect. Fur-
thermore, it is considered good to defect against bad players. For example,
suppose that j defects k (X jk ≤ 0) and that i thinks k is bad (Xik ≤ 0), then
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9 Evolution of cooperation

this will have a positive effect on j’s reputation (XikX jk ≥ 0). Working out
the remaining possibilities we arrive at the leading second order strategy
illustrated in Fig. 9.4.

Although private reputations could also potentially follow a third or-
der strategy, this seems unlikely. Already private reputations in a second
order scheme are relatively demanding on people, and experimental ev-
idence suggests that people commonly adopt simpler methods (Milinski,
Semmann, Bakker et al., 2001). Hence, it makes sense to restrict ourselves
to second order strategies. Furthermore, a private first order strategy is
not that interesting for a private reputation, since everybody will always
be judged in the same way, regardless of the reputation of the recipient.

Agents that use dynamics Ẋ = X2 will be referred to as type A, and
agents that use dynamics Ẋ = XX> as type B. Defectors are agents that
always defect. We assume that all agents talk, and share information truth-
fully as requested by the demanding party (including defectors). For ex-
ample, if a type A agents asks a defector what he thinks of another agent of
type B, he will answer that he has defected. If type B would have gossiped
with a defector about an agent of type A, the defector would have replied
what that agent of type A did.

In general, three types of agents might be in our population, and we
can decompose the reputation matrix X accordingly as

X =

XA
XB
XD

 ,

where XA are the reputations in the eyes of agents of type A, XB for type
B and XD for defectors. The reputation for defectors will not change, and
will always be negative, i.e. XD(t) = XD(0) < 0. For the results displayed
here we have used XD(0) = −10, but results remain by and large the same
when varying this parameter, as long as it remains sufficiently negative.
As stated, the dynamics for type A and type B remain exactly as before

ẊA = XAX,

ẊB = XBX>,

ẊD = 0.

Agents defect whenever X(t)i j ≤ 0 and cooperate whenever X(t)i j > 0.
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We define the cooperation matrix C(t) accordingly

Ci j(t) =

{
0 if Xi j ≤ 0

1 if Xi j > 0

Whenever an agent i cooperates with j, or C(t)i j = 1, agent j receives
a payoff of b at a cost of c to agent i, as illustrated in Fig. 9.2. Since we
are dealing with continuous dynamics here, we assume the agents are in-
volved in infinitesimally short games. Assuming the solution of XA(t) and
XB(t) blows up at time t∗, we obtain the payoff vector P as

F =
1
n

∫ t∗

0
bC(t)>e− cC(t)edt,

where e = (1, . . . , 1) the vector of all ones. Each element Fi contains the
payoff for an individual agent i.

Based on the payoffs P we let the population evolve. We sample our
new population based on the payoff of this old population. We define the
replication probability as

φi =
expβFi

∑i expβFi
,

which is the Boltzmann probability distribution, where β represents the Boltzmann
distribution

selective pressure. Higher β signifies higher selective pressure, and leads
to a higher reproduction of those with a high payoff, and in the limit β →∞ only those with the maximum payoff reproduce. Forβ→ 0 this tends to
the uniform distribution, where payoffs no longer play any role. In other
words, we simulate a Wright-Fisher process (see section 9.1.1) with fitness
function fi = expβFi. We have used β = 1 as the “standard” selective
pressure, but have also simulated for high selective pressure (β = 5) and
low selective pressure (β = 0.5). We stop the simulation whenever one
of the types becomes fixated in the population. We repeat this process
1,000 times for the results using β = 1, and for the low (β = 0.5) and
high (β = 5) selective pressure 100 times in order to estimate the fixation
probability. Finally, we initialize the population with an equal number of
agents of each type. The initial reputation X(0) is sampled from a standard
Gaussian distribution with mean zero and standard deviation one. We
reinitialize the reputation matrix every generation.

The results are displayed in Fig. 9.6 using a normalized cost of c = 1
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Fig. 9.6 Evolutionary performance of both models

(the ratio b/c drives the evolutionary dynamics). When directly competing
against each other, type B has an evolutionary advantage (its fixation prob-
ability ρB > 1/2) compared to type A, already for relatively small benefits.
When each type is playing against defectors (agents that always defect),
type A seems unable to defeat defectors (ρA < 1/2) for any b < 20, while
type B performs quite well against them.

When varying the number of agents, the critical benefit b∗ at which type
B starts to have an evolutionary advantage changes (i.e. where the fixation
probability ρB = 1/2). For b > b∗ agents using the model Ẋ = XX>

have a higher chance to become fixated, while for b < b∗ defectors tend to
win. The inequality for type B to have an evolutionary advantage can be
relatively accurately approximated by b > b∗ = κ

√
n where κ is estimated

to be around κ ≈ 1.72± 0.037 (95% confidence interval).
In summary, if b

c > κ
√

n the model Ẋ = XX> has an evolutionary
advantage. Type B is able to lead to cooperation and defeats type A. Based
on these results, if a gossiping process evolved during the course of human
history in order to maintain cooperation, the model Ẋ = XX> seems more
likely to have evolved than Ẋ = X2. For smaller groups a smaller benefit
is needed for the model Ẋ = XX> to become fixated. This dependence
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Fig. 9.7 Performance for different number of agents

seems to scale only as
√

n, so that larger groups only need a marginally
larger benefit in order to develop cooperation.

In addition to the results of competing both type A and type B sepa-
rately against defectors, we also obtained results for populations initial-
ized with type A, type B and defectors, all three at the same time. These
results are largely the same as for one of the types against defectors. A
small difference is that type A obtains a small advantage, because it can
benefit from type B defeating the defectors. These results are reported in
Fig. 9.8.

The results for the different selective pressure are reported in Fig. 9.9.
A higher selective pressure leads to a higher evolutionary advantage for
type B, as could be expected. A lower selective pressure levels the playing
field, and allows type A to survive almost as frequently as type B, although
still somewhat less frequently. The performance against defectors however
remains largely unchanged for type A, and they are still unable to survive
against defectors. For type B, they tend to win more frequently for low
benefits b for low selective pressure, while for higher benefit b the high
selective pressure allows them to thrive. This is probably due to the rel-
atively slim evolutionary advantage of defectors versus type B for low b,
while the advantage of type B players is quite substantial at high b.
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Fig. 9.8 Results including type A, B and defectors

In conclusion, for second order indirect reciprocity, there seems to be
only one leading strategy, namely it is good to cooperate with good people
and good to defect against bad people, as reported in Fig. 9.4. When con-
sidering private reputations, second order strategies make more sense than
first or third order strategies. Considering the single leading second order
strategy for private reputation gives rise to a model such as Ẋ = XX>.
By the previous chapter we know this model has the tendency to split in
two groups. Additionally, it is unable to maintain a bad reputation for the
defectors at all times. Given these considerations, it is possible that social
balance emerges as a by-product of a indirect reciprocity scheme in order
to maintain cooperation. In this sense, the splitting into two factions and
the maintenance of cooperation are two sides of the same coin. It has been
suggested that gossiping has evolved to maintain cooperation and cohe-
sive social networks (Dunbar, 1998). If that is true, its likely consequence
is also that social groups split into antagonistic factions.
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Ẋ = X 2 Ẋ = XXT

Against each other

Against defectors

(b) β = 5

Fig. 9.9 Results different intensities of selection
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10 Ranking nodes using reputation

IN the previous chapter we investigated the evolution of cooperation.
In many situations we would like to know whether we could trust
someone to cooperate or not. That is, suppose we are given some net-

work of who (dis)trusts whom, would it then be possible to state whom we
should trust and whom we should not trust? After all, perhaps somebody
who indicates that he trusts somebody might not be trustworthy himself.

10.1 Ranking nodes

Suppose for the moment we would have only indications of trust (i.e. only
positive links). In what way could we then indicate which node should
be trusted more so then others? This idea is known as ranking nodes ac-
cording to some reputation (or trust). For example, this idea forms the core
of Google’s PageRank. It is the score Google assigns to pages indicating
whether such a page has a “good” reputation or not, in order to return
relevant search results (Brin and Page, 1998).

The ranking of nodes, or assigning some “importance” or “trust” scores
to nodes. Already in the 1970s, various researchers from the social sciences
have introduced concepts such as betweenness (Freeman, 1977), closeness
(Freeman, 1978) and eigenvector centrality (Bonacich, 2007, 1987) to mea-
sure how central or important a node in the network was. For example,
centrality-like measures are shown to play an important role in spreading
processes on networks, such as failing cascades (Watts, 2002), or the infec-
tion process of sexually transmitted diseases (De, Singh, Wong et al., 2004;
Christley, Pinchbeck, Bowers et al., 2005). Furthermore, it helps to identify
different roles nodes might play in a network (Perra and Fortunato, 2008).

In the 1990s several alternative ranking measures were added, notably
Kleinbergs HITS-algorithm (Kleinberg, 1999), and Google’s PageRank (Brin
and Page, 1998). When file sharing and especially peer-to-peer applica-
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tions grew, these measures, and variants thereof, became popular to keep
“good” peers in the sharing network, and exclude “bad” peers (Kamvar,
Schlosser and Garcia-Molina, 2003; Abrams, McGrew and Plotkin, 2004).
Reputation and trust also plays a vital role in online markets such as eBay
(Resnick, Zeckhauser, Swanson et al., 2006).

Negative links however, are usually not taken into account by these
ranking measures, or worse, they break down when negative entries ap-
pear as weights of the links. However, the signs of links (positive or neg-
ative) should not be ignored, since they may bear important consequences
for the structure of the network, not in the least for the ranking of nodes.
Proposals have been made to include such semantic information in hyper-
links on the World Wide Web (Massa and Hayes, 2005). Negative links are
also present in various other settings such as reputation networks (Massa
and Avesani, 2005), sharing networks (Kamvar, Schlosser and Garcia-Molina,
2003), social networks Szell, Lambiotte and Thurner (2010) and interna-
tional networks (Maoz, Terris, Kuperman et al., 2008), and play a key, if not
vital, role in these networks. Studying how negative links influence the im-
portance of nodes may help the understanding of such systems, and such
a concept of importance might facilitate the analyses of such networks.

Let us first briefly review the PageRank. Assume we have some adja-PageRank

cency matrix A. The reputation ri of node i should then be higher when
it is recommended by nodes of a higher reputation. On the other hand, if
a page points to many pages, the endorsement should be less strong. In
other words, we could define the reputation recursively as

ri = ∑
j

A ji

k j
r j, (10.1)

and the reputation ri of node i is the sum of the reputations of the nodes
that point to node i proportional to the degree. If we set M = (D−1 A)>

with D = diag(k) with k the degrees, this can also be written as

r = Mr. (10.2)

Notice that this is equivalent to the Markov chain for a random walk (see
section 2.2.6). Hence, the reputation has a nice interpretation: it is the prob-
ability that we visit that node during a random walk. Moreover, in the con-random walk

text of surfing on the web this is also pertinent. The reputation of a web
page can then be regarded as the probability that a random surfer visits
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this page.

Although this forms the basis for ranking, it has two problems: (1) dan-
gling nodes, i.e. nodes that have no outgoing links; and (2) unconnected dangling node

graphs. The first problem is remedied by supposing that in the random
walk, whenever one meets a site that has no outgoing links, we will chose
another site at random. In order to do so let ai = 1 if ki = 0 and ai = 0
otherwise. Then we define A′ = A + ae> where e = (1, . . . , 1). We then
set M = (D−1 A′)> where D = diag(k) with k = A′e the degrees of A′.
The second problem is remedied by adding a uniform probability to go to
any site at all times. So, at each step, there is some probability α that the
random surfer randomly jumps to another website, sometimes called the
zap factor, which is commonly set toα = 0.85. This corresponds to setting zap factor

G = αM + (1−α) 1
n

ee>. (10.3)

The page rank is then defined as the vector x for which x = Gx, i.e. the
dominant eigenvector of the matrix G. This matrix is usually called the
Google matrix. Because of the zapping factorα, the dominant eigenvector
is unique and convergence is relatively quick.

However, this and other methods only work if all weights Ai j ≥ 0 are
non-negative. Hence, for negative links these type of methods break down,
and other methods are needed. We will now analyse how we can introduce
such a method.

Recently there has been more attention to negative links in ranking
measures, for example PageTrust (De Kerchove and Van Dooren, 2008).
The difference between PageTrust and PageRank is that in the random
walk in PageTrust nodes that are negatively pointed to during the ran-
dom walk are blacklisted, and are visited less often, thereby lowering their
PageTrust score. Another suggestion was to first calculate some ranking
using only the positive links (e.g. using PageRank), and then apply one
step of distrust, so that the negative links are taken into account (Guha,
Kumar, Raghavan et al., 2004; Massa and Hayes, 2005).

It was also suggested to introduce a propagation of distrust (Guha, Ku-
mar, Raghavan et al., 2004), implying that if i distrusts j, and j distrusts r,
then i should trust r (the adage that the enemy of my enemy is my friend).
The authors noted that this could lead to situations in which a node is its
own enemy (if one considers a cycle of three negative links), reminiscent
of social balance (see chapter 7).
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10 Ranking nodes using reputation

Given that a signed network might not be strictly balanced, an enemy
of an enemy is not necessarily a friend. That is, if a node has a negative
reputation, his links should not be distrusted, only trusted less. In other
words, we should not assume a node with a negative reputation is not
trustworthy (if he points negatively towards someone, we should not in-
terpret it as positive, and vice versa), we should only trust his judgements
less. This will actually follow from the derivation of the measure based on
a discrete choice argument, which we will present in the following section.
Most of the existing algorithms dealing with negative links do not apply
distrust in such a recursive manner, thereby limiting their effect. Further-
more, none of the algorithms can actually deal with negative reputations,
while this negativity can actually provide additional insight. For example,
a negative reputation would signal that such a node should be blocked
from the network.

Interestingly, a slightly different formulation, namely that ri is some
opinion or belief that node i holds, and it is updated according to the beliefs
of its neighbours as

ri(t + 1) = ∑
j

Ai j

k j
r j(t),

has quite a different behaviour. Under the same conditions as for Eq. 10.2
(see also section 2.2.6) these opinions converge to some consensus, such
that all agents have the same opinion or belief, i.e. ri(t) = r j(t) = r =

〈r(0)〉 for t → ∞ for all agents (DeGroot, 1974; Olfati-Saber, Fax and Mur-
ray, 2007). These results are independent of whether the opinions or be-
liefs are positive or negative. If negative links are considered however re-
sults do change, and this is subject of recent research (Altafini, 2012; Shi,
Proutiere, Johansson et al., 2013), but we will not consider it further in this
thesis.

10.2 Including negative links

Let as usual G = (V, E) be a directed graph with n = |V| nodes and m =

|E| edges. Each edge (i, j) has an associated weight wi j ∈ R which can
possibly be negative. By A we denote the n× n weighted adjacency matrix
associated to the graph, such that Ai j = wi j if there is an (i, j) edge and
zero otherwise. Furthermore, let ri be some reputation of node i (we will
make this explicit later on). We consider the links to indicate a certain trust:
if node i points positively (negatively) to node j, this indicates that i trusts
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(distrusts) j. The goal is to infer some global trust values from the local
trust links.

Suppose we are asked which node to trust, if we were to choose one.
We assume that a higher reputation indicates some degree of trust, so we
should preferably choose nodes which have a high reputation ri. However,
there might be some errors in choosing the one with the highest reputation.
This is where the framework of discrete choice theory comes in.

The usual background for discrete choice theory is the following (An- discrete choice

derson, de de Palma and Thisse, 1992). Suppose there are n different choices
(in our case, nodes), which have a different associated utility ui. We ob-
serve the utility oi and have some error term εi such that

ui = oi +εi . (10.4)

We would like to choose the object with the maximum utility. However,
since we only observe oi, it is uncertain which item actually has the maxi-
mum real utility. So, the question becomes: what is the probability we will
select a certain object? That is, what is the probability that ui ≥ u j for all
i 6= j, or

Pr(ui = max
j

u j), (10.5)

depending on the observed utility oi and the error term εi. In our case, we
equate the observed utility oi with some reputation ri. We assume the real
reputation is then ui = ri +εi, where εi is the error made in observing the
reputation.

The probability of choosing the node with the highest reputation de-
pends on the distribution of the error term εi. Using the following as-
sumption for the error term, we arrive at the well known multinomial logit
model (Anderson, de de Palma and Thisse, 1992). Suppose the εi are i.i.d.
double exponentially distributed1 according to

Pr(εi ≤ x) = exp−
[

exp−
(

x
µ
+γ

)]
, (10.6)

where γ ≈ 0.5772 is Euler’s constant. The mean of Eq. (10.6) equals zero,
and the variance equals 1/6π2µ2. With this error distribution it can be
proven (Anderson, de de Palma and Thisse, 1992) that the probability node

1This distribution is also known as the Gumbel distribution
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10 Ranking nodes using reputation

i has the highest real reputation becomes

pi =
exp ri

µ

∑ j exp
r j
µ

. (10.7)

This probability distribution is known as the Boltzmann distributionBoltzmann
distribution

The probability a node i has the highest reputation, increases with higher
reputation ri, depending on the amount of noise characterized by µ, which
we will term the “uncertainty”. There are two extreme scenarios depend-µ uncertainty

ing on µ. If µ → ∞ the variance goes to infinity, and the contribution of the
observed reputation in ui = ri +εi becomes negligibly small. In that case,
the probability a node has the highest real reputation becomes uniform, or
pi = 1/n. In the other extreme, µ → 0, there is essentially no error, and
we will always be correct in choosing nodes with a maximum ri. That is, if
there is a set of nodes M with ri = max j r j for i ∈ M, then pi = 1/|M| for
i ∈ M, and zero otherwise.

The probabilities p shows how much we should trust nodes. Nodes
with a higher reputation are more trustworthy than nodes with a lower
reputation. The difference in trust becomes more pronounced with de-
creasing µ, up to the point where we only trust nodes with the highest
reputation. We shall call these probabilities the trust probabilities.

The trust probabilities p depend on the reputation ri, which we will
define now. We will ask a certain node j to provide the reputation values
of the other nodes. That is, we ask node j to be the judge of his peers. Since
we consider A ji to be the trust placed by node j in node i, we will assume
that if node j is the judge, he would simply say that ri = A ji. The general
idea is that the probability to be a judge depends on the reputation, which
then influences that probability again.

The probability to be chosen as judge is simply pi. Using those proba-judge

bilities pi, we select a judge at random, and let him give his opinion on the
reputation of his peers. We thus allow trustworthy nodes a higher prob-
ability to judge their peers. The expected reputation can then be written
as

ri = ∑
j

A ji p j,

or in matrix notation,
r = A>p,

where A> is the transpose of A and p is a column probability vector (i.e.
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‖p‖1 = 1 and pi ≥ 0). If we plug this formulation of the reputation into
Eq. (10.7) we obtain a recursive formulation of trust probabilities

p(t + 1) =
exp 1

µ A>p(t)

‖ exp 1
µ A>p(t)‖1

, (10.8)

for some initial condition p(0), with exp(·) the element-wise exponential.
Notice that if we add some constant c to A, then p will remain unchanged.
We will prove next that this iteration actually converges to a unique fixed
point p∗, i.e. independent of the initial conditions, for some range of values
for µ. The final values of the trust probabilities can thus be defined as the
limiting vector p∗ = limt→∞ p(t) or, equivalently, the fixed point p∗ for
which

p∗ =
exp 1

µ A>p∗

‖ exp 1
µ A>p∗‖1

, (10.9)

and the final reputation values as

r∗ = A>p∗. (10.10)

Notice that these reputation values are also a fixed point of the equation

r∗ = A>
exp 1

µ r∗

‖ exp 1
µ r∗‖1

(10.11)

and that the trust probabilities are related to the reputation values as

p∗ =
exp 1

µ r∗

‖ exp 1
µ r∗‖1

. (10.12)

In this sense, the trust probabilities and the reputation values can be seen
as a dual formulation of each other.

Upon closer examination of Eq. (10.11), a certain node j might indeed
get a negative reputation, but his judgements are taken less into account,
they are not reversed. That is, as soon as a node has a negative reputation,
we do not assume he is completely untrustworthy, and that his negative
judgements should be taken positive, but only that he is less trustworthy.
This means we indeed do not assume that the enemy of my enemy is my
friend. A node could get a negative reputation for example if he is nega-
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c

a

b

d e

(a) Example network

PR µ = 1 µ = 1/5 µ = 1/8

a 0.183 0.223 0.384 0.424
b 0.184 0.213 0.179 0.142
c 0.263 0.223 0.384 0.424
d 0.184 0.171 0.026 0.005
e 0.186 0.171 0.026 0.005

(b) Trust for various values of µ

t = 0 t = 1 t = 2 t = 3

a 0.20 0.50 0.3 0.5
b 0.20 – 0.3 –
c 0.20 0.50 0.3 0.5
d 0.20 – – –
e 0.20 – – –

(c) Cyclic behaviour for µ = 0

Table 10.1 Example trust probabilities

tively pointed to by trustworthy nodes. This approach can be summarized
in the idea that the reputation of a node depends on the reputation of the
nodes pointing to him, or stated differently, a node is only as trustworthy
as the nodes that trust him. Notice that this idea is similar to that of Page-
Rank, namely that nodes are as important or trustworthy as the neighbours
pointing to him (Brin and Page, 1998).

Let us take a look at a small example to see what the effect is of negative
links in a network as shown in Table 10.1. There is only one negative link,
from a to d. The effect of the negative link becomes more penalizing when
µ is decreased, as shown in Table 10.1b. That has also consequences for
node e, who is only pointed to by d, who receives little trust, which then
also leads to little trust for e. The PageRank for these nodes (for which we
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PageRank Exp Rank µ = 0.1 Exp Rank µ = 1

1 Barabási, A Barabási, A Barabási, A

2 Newman, M Jeong, H Newman, M

3 Sole, R Newman, M Jeong, H

4 Jeong, H Pastorsatorras, R Pastorsatorras, R

5 Pastorsatorras, R Vespignani, A Vespignani, A

6 Boccaletti, S Moreno, Y Moreno, Y

7 Vespignani, A Sole, R Sole, R

8 Moreno, Y Oltvai, Z Boccaletti, S

9 Kurths, J Albert, R Vazquez, A

10 Stauffer, D Vazquez, A Diazguilera, A

Table 10.2 Top 10 rankings.

did not take into account the negative link, and used a zapping factor of
0.85) are provided as comparison, which assigns nodes d and e actually
higher rankings.

Of course, this measure can also be applied to networks without neg-
ative links. It is interesting to compare the exponential rank to the Page-
Rank. In this case we have taken the co-authorship network of network
scientists from Newman (2006). This network includes 379 nodes in the
largest connected component, and in Table 10.2 we list the top 10 highest
ranked nodes for three different methods: (1) PageRank; (2) exponential
rank withµ = 0.1; and (3) exponential rank withµ = 1. A famous network
scientist, Barabási remains the highest ranked author in all three methods.
For the rest there are quite some differences between PageRank and the
exponential rank using µ = 0.1. The rankings for µ = 0.1 are relatively
similar to the rankings for µ = 1. Nonetheless, the correlation between the
PageRank and the two different exponential rankings are quite high: 0.91
and 0.97 for µ = 0.1 and µ = 1 respestively. The rank correlation reveals
there are more changes in the rank though, reaching only 0.61 for both
µ = 0.1 and µ = 1. We visualize the network using PageRank in Fig. 10.1a
and the exponential ranking with µ = 0.1 in Fig. 10.1b.

We will now show that indeed this limit converges (for some range of
µ) and is unique, i.e. does not depend on the actual initial condition p(0).
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10 Ranking nodes using reputation

10.3 Convergence and uniqueness

More formally, let us define the map V : Sn → Sn, which maps

V(p) =
exp 1

µ A>p

‖ exp 1
µ A>p‖1

, (10.13)

where Sn = {y ∈ Rn
+ : ‖y‖1 = 1}, the n-dimensional unit simplex. Forunit simplex

the proof of convergence we rely on mixed matrix norms, or subordinatemixed matrix norm

norms, which are defined as

‖A‖p,q = max
‖x‖q=1

‖Ax‖p. (10.14)

Denoting by ‖A‖max = maxi j |Ai j|, we have the following useful inequal-
ity

‖Ax‖∞ = max
i
‖e>i Ax‖ ≤ ‖A‖max · ‖x‖1,

hence
‖A‖∞,1 ≤ ‖A‖max (10.15)

where ei is the i-th coordinate vector. Let us now take a look at the JacobianJacobian

of V, which can be expressed as

∂V(p)i
∂p j

=
exp( 1

µ A>p)i
1
µ A ji

∑l exp( 1
µ A>p)l

−
exp( 1

µ A>p)i ∑l exp( 1
µ A>p)l

1
µ A jl(

∑l exp( 1
µ A>p)l

)2 .

Now let u = exp( 1
µ A>p), and q = ‖u‖1. Then V(p) = u/q, and ∂V(p)i

∂p j
can

be simplified to

∂V(p)i
∂p j

=
1
µ

(
ui
q

A ji −
1
q2 ∑

l
uiul A jl

)

or in matrix notation

V′(p) =
1
µ

(
1
q

diag(u)− 1
q2 uu>

)
A> (10.16)

at which point the following lemma is useful.

Lemma 10.1. Denote by M(p) the matrix M(p) = diag(p)− pp> where p ∈
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Sn, then ‖M(p)‖1,∞ ≤ 1.

Proof. Note that ‖M(p)x‖1 = ∑
n
i=1 pi|xi − p>x|. We need to find the maxi-

mum of this function on the unit box (that is, where ‖x‖∞ = 1). By convex-
ity of norms, the maximum of ‖M(p)x‖1 is attained at the boundary, i.e.
some vector σ ∈ Rn with coordinates ±1. Denoting by I+ = {i : σi = 1}
the set of positive entries, and by S1 = ∑i∈I+ pi and S2 = 1 − S1. Then
p>σ = S1 − S2, and we have

‖M(p)σ‖1 =
n

∑
i=1

pi|σi − S1 + S2| = ∑
i∈I+

pi|1− S1 + S2|+ ∑
i/∈I+

pi|1 + S1 − S2|

= S1(1− S1 + S2) + S2(1 + S1 − S2) = 1− (S1 − S2)
2.

Since (S1 − S2)
2 ≥ 0, ‖M(p)σ‖1 ≤ 1.

This immediately leads to the following proof that the map V con-
verges.

Theorem 10.2. For µ > 1
2 (maxi j Ai j −mini j Ai j) the map V has a unique fixed

point p ∈ Sn.

Proof. By the Banach fixed point theorem, this map has a unique fixed Banach fixed point

point if it is contractive. That is, there should be a c < 1 such that

‖V(p)−V(u)‖1

‖p− u‖1
≤ c, (10.17)

for p, u ∈ Sn. That is, we should have ‖V′(p)‖1,1 ≤ c. Since we can write
V′(p) = 1

µ M(V(p))A, using the lemma and Eq. (10.15) we arrive at

‖V′(p)‖1,1 =
1
µ
‖M(V(p))A‖1,1 ≤

1
µ
‖M(V(p))‖1,∞‖A‖∞,1 ≤

1
µ
‖A‖max.

Since adding a constant to our matrix A does not change the vector V(p),
we can subtract 1

2 (mini j Ai j + maxi j Ai j), and arrive at

‖V′(p)‖1,1 ≤
1

2µ
(max

i j
Ai j −min

i j
Ai j).

Hence, if

µ >
1
2
(max

i j
Ai j −min

i j
Ai j),
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10 Ranking nodes using reputation

the map V is contractive and by the Banach fixed point theorem, it will
have a unique fixed point, and iterates will converge to that point.

For this lower bound on µ, we can guarantee convergence of the itera-
tion. Below this lower bound, we choose nodes with more and more cer-
tainty. As we said in Sec. 10.2, when µ → 0 the probabilities pi = 1/|M| for
i in some set M of nodes with maximal reputation ri. In the iteration this
means only nodes with the highest reputation can become judges. Since
we completely trust his judgements, whatever node(s) he assigns the high-
est reputation will be the next judge. Unless everyone always agrees on
the node with the highest reputation, cycles of judges pointing to the next
judge will emerge.

For example, if we take µ → 0 for the example network given in Ta-
ble 10.1, we cycle as follows. We start out with p(0) = 1/n, and the aver-
age reputation will be highest for nodes a and c, and they will be chosen
as judge with probability 1/2. In the next iteration the average reputation
will be 1/2 for nodes a, b and c and zero for d and e. Hence, one of the
nodes a, b and c will be selected as judge, and the average reputation is 2/3
for a and c, and 1/3 for b. Now we are back where we were after the first it-
eration, since a and c both have the same maximal reputation, and they are
chosen as judge each with probability 1/2, as summarized in Table 10.1c.
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11 Conclusion

IN this thesis we have explored two broad subjects: community de-
tection and negative links. The latter subject is however also related
to community detection, since networks with negative links are often

believed to be organized into factions, such that positive links fall within
factions and negative links in between them. We have seen how we can ad-
dress the issue of the resolution limit, and suggested a very simple model
(CPM) that circumvents this problem. In addition, CPM has a very nat-
ural interpretation: each community is expected to have a density of at
least γCPM, while the density between two communities should be less then
γCPM. Choosing some particular γCPM is not straightforward however and
depends on the network in question. Nevertheless we were able to provide
some insight into the different partitions returned for some γCPM. In par-
ticular, we introduced the notion of the “significance” of a partition, which
helps in choosing some meaningful resolution parameter γCPM.

It is in some sense ironic that we return to the significance of a partition.
In first instance, the popular method of modularity (Newman and Girvan,
2004) was introduced in order to choose some “significant” level in an hier-
archical clustering method. Because this method suffered from a resolution
limit, we introduced the Constant Potts Model (CPM) that didn’t rely on
any comparison to a random graph. Yet, in order to determine a meaning-
ful resolution, we returned to some comparison to a random graph. In this
sense, we are back at square one: we have some single measure in order to
determine some “significant” level.

This makes one wonder whether there exists any method that is ca-
pable of always detecting the “correct” partition. As we have seen, the
problem of the resolution limit is usually associated to depending on some
graph properties beyond the immediate link—only local methods do not
seem to suffer from the resolution limit. Yet, a local method cannot be
used to decide whether a partition is “meaningful” or not. In this sense,
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we might conjecture, in similar spirit as Kleinberg (2003) his “impossibility
theorem on clustering”, that no community detection method exists that is
both scale invariant and, in some vague notion, “meaningful”.

Concerning negative links and social balance, we have shown that only
the model Ẋ = XX> attains social balance generically. This implies that
for almost any initial condition, this model will converge to social balance.
Moreover, once some network has attained social balance, for almost all
perturbations away from social balance, the dynamics will return to social
balance. This explains why we see so often networks split in two opposing
camps.

In addition, the model Ẋ = XX> seems to be able to explain the evolu-
tion of cooperation through indirect reciprocity if reputations are private.
It had been theorized that humans developed language so they could gos-
sip about others, in order to strengthen their social network and sustain
larger group sizes (Dunbar, 1998). Yet our analysis suggests a subtly dif-
ferent mechanism: gossip didn’t evolve to strengthen social networks but
to maintain cooperation and dispel defectors. It is therefore ironic that
the model predicts a split in two factions: even though gossip might have
evolved to keep larger groups together, as a by product it seems to split
groups in two. Whereas gossip was argued to be inclusive (it would inte-
grate members of some social group), it also is exclusive (it repels members
from different groups).

Nonetheless, the models currently analysed do exhibit several unrealis-
tic features, we would like to address: (1) an all-to-all topology; (2) dynam-
ics that blow-up in finite time; and (3) homogeneity of all agents. Although
most of these issues can be addressed by specifying different dynamics, the
resulting models are much more difficult to analyse, thereby limiting our
understanding. Although the two models are somewhat simple, they are
also tractable, and what we lose in truthfulness, we gain in deeper insights:
in simplicity lies progress. Our current analysis offers a quite complete un-
derstanding for these relatively simple models.
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Nomenclature

C community sets (p. 23)

∆H difference between two partitions (p. 41)

∆H(σi = c 7→ d) move node (p. 41)

∆H({c, d} 7→ c′) merge communities (p. 42)

∆H(c′ 7→ {c, d}) split communities (p. 42)

δ Kronecker delta (p. 24), Dirac delta (p. 218)

H(σ) canonical model (p. 24)

HLP LP model (p. 30)

HAFG AFG model (p. 28)

HCPM CPM model (p. 30)

HRB RB model (p. 25)

HRN RN model (p. 29)

〈·〉 average (p. 26)

µ mixing parameter (p. 50)

NMI(X, Y) normalized mutual information (p. 53)

σ membership vector (p. 22)

VI(X, Y) variation of information (p. 53)

A adjacency matrix (p. 22)

B modularity matrix (p. 47)
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Nomenclature

E edges (p. 22)

E± positive/negative edges (p. 155)

F faction (p. 156)

fs(~n) fitness (p. 205)

G graph (p. 22)

G± positive/negative graph (p. 116)

H(X) entropy (p. 35)

H(X, Y) joint entropy (p. 35)

H(X | Y) conditional entropy (p. 35)

I(x) information (p. 35)

I(X, Y) mutual information (p. 53)

In identity matrix (p. 29)

ki degree (p. 27)

S community matrix (p. 47)

V nodes (p. 22)
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Index

H(X), 35
H(X | Y), 35
I(X, Y), 53
I(x), 35
In, 29
∆H, 41
∆H(σi = c 7→ d), 41
∆H({c, d} 7→ c′), 42
∆H(c′ 7→ {c, d}), 42
H(σ), 24
HAFG, 28
HCPM, 30
HRB, 25
HRN, 29
HLP, 30
NMI(X, Y), 53
VI(X, Y), 53
δ, 24, 218
〈·〉, 26
µ, 50

AFG model, 28
AllC, 220
AllD, 220, 223

Banach fixed point, 255
benefit-cost ratio, 223
binary entropy, 105
binomial distribution, 170
bipartite, 165
Boltzmann distribution, 42, 239,

250

Chebyshev’s inequality, 100
chord, 160
chromatic number, 165
clique, 61, 165
code, 36
cognitive dissonance, 154
community graph, 46
community matrix, 47
community sets, 23
conditional entropy, 35
configuration model, 27
connected components, 164
Constrained Triad Dynamics, 171
CPM model, 30

dangling node, 247
degree, 27
degree distribution, 27
delta

Dirac, 218
Kronecker, 24

diagonalizable, 175
direct reciprocity, 222
discrete choice, 249
dyad, 128

eigenvalue, 29
decomposition, 48

eigenvector, 29
entropy, 35
Erdös-Renyí graph, 26, 99
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INDEX

ESS, 203
evolutionary advantage, 209
expected payoff, 203, 223

faction, 156
fitness, 205
fixation probability, 208
Fokker-Planck, 217

graph, 22

homophily, 115

indirect reciprocity, 226
induced subgraph, 99
information, 35
intensity of selection, 206
isomorphic, 89

Jacobian, 254
Jordan

block, 179
form, 179

Kullback-Leibler divergence, 105

Laplacian, 39
layers, 121
leading eight, 236
link probability, 25
Local Triad Dynamics, 168
Louvain method, 45
LP model, 30

Markov’s inequality, 100
matrix

adjacency, 22
identity, 29
modularity, 47
normal, 186
orthogonal, 48, 175

positive definite, 192
skew-symmetric, 175, 190
stability, 33
Toeplitz, 179

maxflow, 130
membership vector, 22
merge communities, 42
mixing parameter, 50
Moran Process, 205
move node, 41
mutual information, 53

Nash equilibrium, 203
neutral selection, 209
node size, 47
norm

Frobenius, 174
mixed matrix, 254

normal matrix, 175
normalized mutual information, 53

PageRank, 246
pairwise comparison, 206
prisoner’s dilemma, 219

random walk, 32, 246
RB model, 25
replicator equation, 215
reproduction probability, 205
reputation dynamics, 228
resolution limit, 61
Riccati, 176, 187, 191
risk dominant, 209
RN model, 29

scale invariant, 83
sign of cycle, 159
sign of path, 159
signed graph, 155
Simulated Annealing, 41
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social balance, 115, 156
spectral bisectioning, 48
split communities, 42
Stirling’s formula, 104
strategy, 203
strength, 118
symbol, 36
symmetric, 47

Taylor series, 210
TFT, see tit-for-tat
tit-for-tat, 222–225
trace, 33
transpose, 47
tree, 68
triad, 156

unit simplex, 254
unitarily invariant, 174

variation of information, 53

weak social balance, 163
Win-Stay-Loose-Shift, 225
Wright-Fisher, 207
WSLS, see Win-Stay-Loose-Shift

zap factor, 247
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