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Citation networks of scientific publications offer fundamental in-
sights into the structure and development of scientific knowledge.
We propose a new measure, called intermediacy, for tracing the his-
torical development of scientific knowledge. Given two publications,
an older and a more recent one, intermediacy identifies publications
that seem to play a major role in the historical development from
the older to the more recent publication. The identified publications
are important in connecting the older and the more recent publica-
tion in the citation network. After providing a formal definition of
intermediacy, we study its mathematical properties. We then present
two empirical case studies, one tracing historical developments at
the interface between the community detection and the scientomet-
ric literature and one examining the development of the literature on
peer review. We show both mathematically and empirically how in-
termediacy differs from main path analysis, which is the most popu-
lar approach for tracing historical developments in citation networks.
Main path analysis tends to favor longer paths over shorter ones,
whereas intermediacy has the opposite tendency. Compared to main
path analysis, we conclude that intermediacy offers a more princi-
pled approach for tracing the historical development of scientific
knowledge.
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C itation networks provide invaluable information for trac-
ing historical developments in science. The idea of tracing
scientific developments based on citation data goes back to
Eugene Garfield, the founder of the Science Citation Index.
In a report published more than 50 years ago, Garfield and
his co-workers concluded that citation analysis is “a valid and
valuable means of creating accurate historical descriptions of
scientific fields” (1). Garfield also developed a software tool
called HistCite that visualizes citation networks of scientific
publications. This tool supports users in tracing historical
developments in science, a process sometimes referred to as
algorithmic historiography by Garfield (2-4). More recently,
a software tool called CitNetExplorer (5) was developed that
has similar functionality but offers more flexibility in analyz-
ing large-scale citation networks. Other software tools, most
notably CiteSpace (6) and CRExplorer (7, 8), provide alterna-
tive approaches for tracing scientific developments based on
citation data.

Main path analysis, originally proposed by Hummon and
Doreian (9), is a widely used technique for tracing historical
developments in science. Given a citation network, main
path analysis identifies one or more paths in the network
that are considered to represent the most important scientific
developments. Many variants and extensions of main path
analysis have been proposed (10-16), not only for citation
networks of scientific publications but also for patent citation
networks (17-21).

In this paper, we introduce a new approach for tracing his-
torical developments in science based on citation networks. We
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propose a measure called intermediacy. Given two publications
dealing with a specific research topic, an older publication
and a more recent one, intermediacy can be used to identify
publications that appear to play a major role in the historical
development from the older to the more recent publication.
These are publications that, based on citation links, are impor-
tant in connecting the older and the more recent publication.

Like main path analysis, intermediacy can be used to iden-
tify one or more citation paths between two publications.
However, as we will make clear, there are fundamental differ-
ences between intermediacy and main path analysis. Most
significantly, we will show that main path analysis tends to
favor longer citation paths over shorter ones, whereas interme-
diacy has the opposite tendency. For the purpose of tracing
historical developments in science, we argue that intermediacy
yields better results than main path analysis.

Intermediacy

Consider a directed acyclic graph G = (V, E), where V denotes
the set of nodes of G and E denotes the set of edges of G.
The edges are directed. We are interested in the connectivity
between a source s € V' and a target ¢ € V. Only nodes that
are located on a path from source s to target ¢ are of relevance.
We refer to such a path as a source-target path. We assume
that each node v € V is located on a source-target path.

Definition 1. Given a source s and a target ¢, a path from s
to t is called a source-target path.

In this paper, our focus is on citation networks of scientific
publications. In this context, nodes are publications and
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Fig. 1. (A) lllustration of the limit behavior of intermediacy.
For p — 0, intermediacy favors nodes located on shorter
paths and therefore node u has a higher intermediacy
than node v. For p — 1, intermediacy favors nodes
located on a larger number of edge independent paths
and therefore node v has a higher intermediacy than node
u. (B) lllustration of the choice of the parameter p. Nodes
u and v are connected by a single direct path in the left
graph and by k indirect paths of length 2 in the right graph.
For different values of k, the bar chart shows the values
of p for which the probability that there is an active path
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edges are citations. We choose edges to be directed from a
citing publication to a cited publication. Hence, edges point
backward in time. This means that the source is a more recent
publication and the target an older one.

Informally, the more important the role of a node v € V in
connecting source s to target t, the higher the intermediacy of
v. To formally define intermediacy, we assume that each edge
e € E is active with a certain probability p. We assume that
the probability of being active is the same for all edges e € E.
Based on the idea of active and inactive edges, we introduce
the following definitions.

Definition 2. If all edges on a path are active, the path is
called active. Otherwise the path is called inactive. If a node
v € V is located on an active source-target path, the node is
called active. Otherwise the node is called inactive.

For two nodes u,v € V, we use Xy, to indicate whether
there is an active path (or multiple active paths) from node
u to node v (Xuv = 1) or not (Xy, = 0). The probability
that there is an active path from node u to node v is denoted
by Pr(Xyu, = 1). We use X(v) to indicate whether there
is an active source-target path that goes through node v
(Xst(v) = 1) or not (Xs:(v) = 0). The probability that there
is an active source-target path that goes through node v is
denoted by Pr(Xst(v) =1) = Pr(Xsy = 1) Pr(Xu: = 1). This
probability equals the probability that node v is active.

Intermediacy can now be defined as follows.

Definition 3. The intermediacy ¢, of a node v € V is the
probability that v is active, that is,

$o = Pr(Xs(v) =1) = 1]

In the interpretation of intermediacy, we focus on the rank-
ing of nodes relative to each other. We do not consider the
absolute values of intermediacy. For instance, suppose the
intermediacy of node v € V is twice as high as the interme-
diacy of node u € V. We then consider node v to be more
important than node w in connecting the source s and the
target t. However, we do not consider node v to be twice as
important as node w.

We now present an analysis of the mathematical proper-
ties of intermediacy. The proofs of the mathematical results
provided below can be found in the Materials and Methods
section.

Pr(Xs = 1) Pr(X,; = 1).

Limit behavior. To get a better understanding of intermediacy,
we study the behavior of intermediacy in two limit cases,
namely the case in which the probability p that an edge is active
goes to 0 and the case in which the probability p goes to 1. In
each of the two cases, the ranking of the nodes in a graph based
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indirect paths k from node u to node v is higher (in orange) or lower (in

gray) in the left graph than in the right graph.

on intermediacy turns out to have a natural interpretation.
The difference between the two cases is illustrated in Fig. 1A.

Let £, denote the length of the shortest source-target path
going through node v € V. The following theorem states that
in the limit as the probability p that an edge is active tends to
0, the ranking of nodes based on intermediacy coincides with
the ranking based on ¢,. Nodes located on shorter source-
target paths are more intermediate than nodes located on
longer source-target paths.

Theorem 1. In the limit as the probability p tends to O,
Ly < £y implies ¢, > ¢y

The intuition underlying this theorem is as follows. When
the probability that an edge is active is close to 0, almost
all edges are inactive. Consequently, almost all source-target
paths are inactive as well. However, from a relative point of
view, longer source-target paths are more likely to be inactive
than shorter source-target paths. This means that nodes
located on shorter source-target paths are more likely to be
active than nodes located on longer source-target paths (even
though for all nodes the probability of being active is close to 0).
Nodes located on shorter source-target paths therefore have a
higher intermediacy than nodes located on longer source-target
paths.

We now consider the limit case in which the probability p
that an edge is active goes to 1. Let o, denote the number
of edge independent source-target paths going through node
v € V. Theorem 2 states that in the limit as p tends to 1,
the ranking of nodes based on intermediacy coincides with
the ranking based on o,. The larger the number of edge
independent source-target paths going through a node, the
higher the intermediacy of the node.

Theorem 2. In the limit as the probability p tends to 1,
ou > 0y implies ¢y > ¢y

Intuitively, this theorem can be understood as follows.
When the probability that an edge is active is close to 1,
almost all edges are active. Consequently, almost all source-
target paths are active as well, and so are almost all nodes. A
node is inactive only if all source-target paths going through
the node are inactive. If there are o edge independent source-
target paths that go through a node, this means that the
node can be inactive only if there are at least o inactive edges.
Consider two nodes u,v € V. Suppose that the number of
edge independent source-target paths going through node v
is larger than the number of edge independent source-target
paths going through node u. In order to be inactive, node v
then requires more inactive edges than node u. This means
that node v is less likely to be inactive than node u (even
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though for both nodes the probability of being inactive is close
to 0). Hence, node v has a higher intermediacy than node
u. More generally, nodes located on a larger number of edge
independent source-target paths have a higher intermediacy
than nodes located on a smaller number of edge independent
source-target paths.

Parameter choice. The probability p that an edge is active
is a free parameter of intermediacy for which one needs to
choose an appropriate value. The results presented above are
concerned with the behavior of intermediacy in the limit cases
in which the probability p tends to either 0 or 1. Fig. 1B
provides some insight into the behavior of intermediacy for
values of the probability p that are in between these two
extremes. The figure shows two graphs. In the left graph,
there is a direct path (i.e., a path of length 1) from node u
to node v. There are no indirect paths. In this graph, the
probability that there is an active path from u to node v
equals p. In the right graph, there is no direct path from

node u to node v, but there are k indirect paths of length 2.
Each of these paths has a probability of p? of being active.

Consequently, the probability that there is at least one active
path from node u to node v equals 1 — (1 — p?)*. The bar
chart in Fig. 1B shows for different values of k the values of
p for which the probability that there is an active path from
node u to node v is higher (in orange) or lower (in gray) in the
left graph than in the right graph. For instance, suppose that
k = 5. For p < 0.22, the probability that there is an active
path from node u to node v is higher in the left graph than in
the right graph. For p > 0.22, the situation is the other way
around. If the probability p that an edge is active is set to 0.22,
a direct path between two nodes is considered equally strong
as 5 indirect paths of length 2. Based on Fig. 1B, one can set
the probability p to a value that one considers appropriate for
a particular analysis.

Path addition and contraction. Next, we study two additional
properties of intermediacy, the property of path addition and
the property of path contraction. We show that both adding

paths and contracting paths lead to an increase in intermediacy.

Path addition and path contraction are important properties
because they reflect the basic intuition underlying the idea of
intermediacy.

We start by considering the property of path addition. We
define path addition as follows.

Definition 4. Counsider a directed acyclic graph G = (V, E)
and two nodes u,v € V such that there does not exist a
path from node v to node u. Path addition is the operation
in which a new path from node u to node v is added. Let
¢ denote the length of the new path. If ¢/ = 1, an edge
(u,v) is added. If £ > 1, nodes wi,...,we—1 and edges
(u, w1), (w1, w2), ..., (We—2,we—1), (we—1,v) are added.

This definition includes the condition that there does not
exist a path from node v to node u. This condition ensures

that the graph G will remain acyclic after adding a path.

The following theorem states that adding a path increases
intermediacy.

Theorem 3. Consider a directed acyclic graph G = (V, E),
a source s € V, and a target t € V. In addition, consider two
nodes u, v € V such that there does not exist a path from node
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Fig. 2. lllustration of the properties of path addition and path contraction. Comparing
(B) to (A) shows how path addition increases intermediacy. Comparing (C) to (B)
shows how path contraction increases intermediacy. For some nodes in (A), (B), and
(C), the intermediacy is reported, calculated using a value of 0.7 for the probability p.

v to node u. Adding a path from node u to node v increases
the intermediacy ¢., of any node w € V located on a path
from source s to node u or from node v to target t.

Theorem 3 does not depend on the probability p. Adding
a path always increases intermediacy, regardless of the value
of p. To illustrate the theorem, consider Fig. 2A and Fig. 2B.
The graph in Fig. 2B is identical to the one in Fig. 2A except
that a path from node u to node v has been added. As can
be seen, adding this path has increased the intermediacy of
nodes located between source s and node u or between node v
and target ¢, including nodes v and v themselves. While the
intermediacy of other nodes has not changed, the intermediacy
of these nodes has increased from 0.17 to 0.23. This reflects
the basic intuition that, after a path from node u to node
v has been added, going from source s to target ¢ through
nodes u and v has become ‘easier’ than it was before. This
means that nodes located between source s and node u or
between node v and target ¢ have become more important
in connecting the source and the target. Consequently, the
intermediacy of these nodes has increased.

We now consider the property of path contraction. We
use Vi, to denote the set of all nodes located on a path from
node u to node v, including nodes v and v themselves. Path
contraction is then defined as follows.

Definition 5. Counsider a directed acyclic graph G = (V, E)
and two nodes u,v € V such that there exists at least one
path from node w to node v. Path contraction is the operation
in which all nodes in V., are contracted. This means that the
nodes in V,,, are replaced by a new node r. Edges pointing
from a node w ¢ V,,, to nodes in V,,, are replaced by a single
new edge (w,r). Edges pointing from nodes in V,,, to a node
w ¢ Vu. are replaced by a single new edge (r,w). Edges
between nodes in V., are removed.

The following theorem states that contracting paths in-
creases intermediacy.

Theorem 4. Consider a directed acyclic graph G = (V, E),
a source s € V, and a target ¢t € V. In addition, consider two
nodes u,v € V such that there exists at least one path from
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node u to node v and such that nodes in V,, do not have
neighbors outside V,,, except for incoming neighbors of node
u and outgoing neighbors of node v. Contracting paths from
node u to node v increases the intermediacy ¢,, of any node
w € V located on a path from source s to node u or from node
v to target ¢.

Like Theorem 3, Theorem 4 does not depend on the prob-
ability p. Theorem 4 is illustrated in Fig. 2B and Fig. 2C.
The graph in Fig. 2C is identical to the one in Fig. 2B except
that paths from node u to node v have been contracted. As
a result, there has been an increase in the intermediacy of
nodes located between source s and node u or between node v
and target ¢, including nodes u and v themselves (which have
been contracted into a new node 7). While the intermediacy
of other nodes has not changed, the intermediacy of these
nodes has increased from 0.23 to 0.34. This reflects the basic
intuition that, after paths from node u to node v have been
contracted, going from source s to target ¢t through nodes u
and v has become ‘easier’ than it was before. In other words,
nodes located on a path from source s to target ¢ going through
nodes u and v have become more important in connecting the
source and the target, and hence the intermediacy of these
nodes has increased.

Alternative approaches. How does intermediacy differ from al-
ternative approaches? We consider two alternative approaches.
One is main path analysis (9). This is the most commonly
used approach for tracing the historical development of sci-
entific knowledge in citation networks. The other alternative
approach is the expected path count approach. Like intermedi-
acy, the expected path count approach distinguishes between
active and inactive edges and focuses on active source-target
paths. While intermediacy considers the probability that there
is at least one active source-target path going through a node,
the expected path count approach considers the expected
number of active source-target paths that go through a node.

Consider the graph shown in Fig. 3A. To get from source
s to target t, one could take either a path going through
nodes u and v or the path going through node w. Based on
intermediacy, the latter path represents a stronger connection
between the source and the target than the former one. This
follows from the path contraction property.

Interestingly, main path analysis gives the opposite result,
as can be seen in Fig. 3B. For each edge, the figure shows
the search path count, which is the number of source-target
paths that go through the edge. There are two source-target
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Fig. 3. Comparison of intermediacy (A), main path analysis (B), and expected path
count (C). For nodes u, v, and w, the intermediacy (A), path count (B), and expected
path count (C) are reported, using a value of 0.85 for the probability p in the calculation
of intermediacy and expected path count.
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paths that go through (s, u) and (v, t), while all other edges are
included only in a single source-target path. Because the search
path counts of (s,u) and (v, t) are higher than the search path
counts of (s,w) and (w,t), main path analysis favors paths
going through nodes u and v over the path going through
node w. This is exactly opposite to the result obtained using
intermediacy. Fig. 3B makes clear that main path analysis
yields outcomes that violate the path contraction property.
Main path analysis tends to favor longer paths over shorter
ones. For the purpose of identifying publications that play
an important role in connecting an older and a more recent
publication, we consider this behavior to be undesirable. There
are various variants of main path analysis, which all show the
same type of undesirable behavior.

Instead of focusing on the probability of the existence of at
least one active source-target path, as is done by intermediacy,
one could also focus on the expected number of active source-
target paths going through a node. This alternative approach,
which we refer to as the expected path count approach, is
illustrated in Fig. 3C. As can be seen in the figure, nodes u
and v have a higher expected path count than node w. Paths
going through nodes v and v may therefore be favored over
the path going through node w. Fig. 3C shows that, unlike
intermediacy, the expected path count approach does not have
the path contraction property. Depending on the probability
p, contracting paths may cause expected path counts to de-
crease rather than increase. Because the expected path count
approach does not have the path contraction property, we
do not consider this approach to be a suitable alternative to
intermediacy.

Empirical analysis

We now present two case studies that serve as empirical il-
lustrations of the use of intermediacy. Case 1 deals with the
topic of community detection and its relationship with sci-
entometric research. This case was selected because we are
well acquainted with the topic. Case 2 deals with the topic of
peer review. This case is of interest because it was recently
examined using main path analysis (22). Hence, it enables us
to demonstrate the key differences between intermediacy and
main path analysis. In both case studies, the intermediacy of
publications was calculated using the Monte Carlo algorithm
presented in the Materials and Methods section.

Case 1: Community detection and scientometrics. We ana-
lyze how a method for community detection in networks ended
up being used in the field of scientometrics to construct clas-
sification systems of scientific publications. In particular, we
are interested in the development from Newman and Girvan
(2004) to Klavans and Boyack (2017). These are our target and
source publications. Newman and Girvan (2004) introduced
a new measure for community detection in networks, known
as modularity, while Klavans and Boyack (2017) compared
different ways in which modularity-based approaches can be
used to identify communities in citation networks.

Our analysis relies on data from the Scopus database pro-
duced by Elsevier. We also considered the Web of Science
database produced by Clarivate Analytics. However, many
citation links relevant for our analysis are missing in Web
of Science. There are also missing citation links in Scopus,
but for Scopus the problem is less significant than for Web of
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Science. We refer to Van Eck and Waltman (23) for a further
discussion of the problem of missing citation links.

In the Scopus database, we found n = 64 223 publications
that are located on a citation path between our source and
target publications. In total, we identified m = 280 033 citation
links between these publications. This means that on average
each publication has k = 2m/n & 8.72 citation links, counting
both incoming and outgoing links.

Fig. 4A shows how the probability of the existence of an ac-
tive path between the source and target publications depends
on the parameter p. This probability increases from zero for
p = 0 to almost one starting from p = 0.25. The vertical line
indicates the value p = 1/k. At this value, traditional percola-
tion theory for random graphs suggests that the probability

Fig. 4. Results for case 1. (A) Probability of the ex-
istence of an active source-target path as a function
of the parameter p and (B) cumulative distribution of
intermediacy scores for different values of p. Spear-
man (C) and Pearson (D) correlations between in-
termediacy scores for different values of p, citation
counts, and reference counts. (E) Citation network of
the top ten most intermediate publications for p = 0.1.
(Only the name of the first author is shown.)

that the source and target publications are connected becomes
non-negligible (24). When searching for a suitable value of
p, the value p = 1/k suggested by percolation theory may
serve as a reasonable starting point. In our case, this yields
p~ 1/8.72 = 0.11, resulting in a probability of about 0.40 for
the existence of an active source-target path.

For five different values of the parameter p, Fig. 4B shows
the cumulative distribution of the intermediacy scores of our
n = 64 223 publications. As is to be expected, when p is close
to zero, intermediacy scores are extremely small. On the other
hand, when p is getting close to one, intermediacy scores also
approach one.

Fig. 4C and Fig. 4D show Spearman and Pearson cor-
relations between the intermediacy scores obtained for five

Table 1. Top ten most intermediate publications in case 1 for p = 0.1.

P
0.1 0.3 0.5 0.7 0.9 cit. ref,
t  Newman & Girvan (2004), Finding and evaluating community structure in networks, Phys.  0.301 0.992 1.000 1.000 1.000 468 0
Rev. E 69(2), 026113.
s  Klavans & Boyack (2017), Which type of citation analysis generates the most accurate  0.301 0.992 1.000 1.000 1.000 0 24
taxonomy of scientific and technical knowledge?, J. Assoc. Inf. Sci. Tec. 68(4), 984-998.
1 Waltman & Van Eck (2013), A smart local moving algorithm for large-scale modularity- 0.061  0.376  0.656 0.878  0.988 2 27
based community detection, Eur. Phys. J. B 86, 471.
2 Waltman & Van Eck (2012), A new methodology for constructing a publication-level clas- 0.060 0.695 0.964 0.999  1.000 15 22
sification system of science, J. Assoc. Inf. Sci. Tec. 63(12), 2378-2392.
3  Hric et al. (2014), Community detection in networks: Structural communities versus  0.052 0.300 0.499 0.700  0.900 1 29
ground truth, Phys. Rev. E 90(6), 062805.
4 Fortunato (2010), Community detection in graphs, Phys. Rep. 486(3-5), 75-174. 0.037 0.629 0.972 1.000 1.000 73 154
5  Newman (2006), Modularity and community structure in networks, P. Natl. Acad. Sci. USA  0.035 0.736 0.979 1.000 1.000 221 8
103(23), 8577-8582.
6  Ruiz-Castillo & Waltman (2015), Field-normalized citation impact indicators using algo- 0.024  0.360 0.624 0.847  0.981 2 24
rithmically constructed classification systems of science, J. Informetr. 9(1), 102-117.
7  Blondel et al. (2008), Fast unfolding of communities in large networks, J. Stat. Mech., 0.022 0.836 0.998 1.000 1.000 78 21
P10008.
8  Newman (2006), Finding community structure in networks using the eigenvectors of ma-  0.021 0.851 0.999 1.000 1.000 138 18
trices, Phys. Rev. E 74(3), 036104.
9  Newman (2004), Fast algorithm for detecting community structure in networks, Phys. Rev.  0.020 0.296  0.501 0.700 0.900 246 1
E 69(6), 066133.
10  Rosvall & Bergstrom (2008), Maps of random walks on complex networks reveal commu-  0.020 0.803 0.994 1.000 1.000 70 10
nity structure, P. Natl. Acad. Sci. USA 105(4), 1118-1123.
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different values of the parameter p. We consider intermediacy
scores to be most useful from an ordinal perspective. From
this point of view, Spearman correlations are more relevant
than Pearson correlations, but for completeness we report
both types of correlations. The Spearman correlations show
that values of 0.3, 0.5, 0.7, and 0.9 for p all yield fairly similar
rankings of publications in terms of intermediacy. However,
the ranking obtained for p = 0.1 is substantially different.
Pearson correlations tend to be lower than Spearman corre-
lations. Hence, even when different values of p yield similar
rankings of publications, there usually does not exist a clear
linear relationship between the intermediacy scores.

Fig. 4C and Fig. 4D also show correlations of intermediacy
scores with citation counts and reference counts. The term
citation count refers to the number of incoming citation links
of a publication, while the term reference count refers to
the number of outgoing citation links of a publication. Only
citation links located on a citation path between the source
and target publications are counted. Regardless of the value
of p, intermediacy scores are not very strongly correlated with
citation counts or reference counts.

Based on our expert knowledge of the topic under study,
we found that the most useful results were obtained by setting
the parameter p equal to 0.1. Table 1 lists the ten publications
with the highest intermediacy for p = 0.1. For each publication,
the intermediacy is reported for five different values of p. In
addition, the table also reports each publication’s citation
count and reference count. Fig. 4E shows the citation network
of the ten most intermediate publications for p = 0.1.

Using our expert knowledge to interpret the results pre-
sented in Table 1 and Fig. 4E, we are able to trace how a
method for community detection ended up in the scientometric
literature. The two publications with the highest intermedi-
acy (Waltman & Van Eck, 2012, 2013) played a key role in
introducing modularity-based approaches in the scientometric
community. Waltman and Van Eck (2012) proposed the use
of modularity-based approaches for constructing classification
systems of scientific publications, while Waltman and Van
Eck (2013) introduced an algorithm for implementing these
modularity-based approaches. This algorithm can be seen as
an improvement of the so-called Louvain algorithm introduced
by Blondel et al. (2008), which is also among the ten most inter-
mediate publications. Most of the other publications in Table 1
and Fig. 4E are classical publications on community detection
in general and modularity in particular. The publications by
Newman all deal with modularity-based community detection.
Rosvall and Bergstrom (2008) proposed an alternative ap-
proach to community detection. They applied their approach
to a citation network of scientific journals, which explains the
connection with the scientometric literature. Fortunato (2010)
is a review of the literature on community detection. The in-
termediacy of this publication is probably strongly influenced
by its large number of references. Hric et al. (2014) is a more
recent publication on community detection. This publication
focuses on the challenges of evaluating the results produced by
community detection methods. This issue is very relevant in a
scientometric context, and therefore the publication was cited
by our source publication (Klavans & Boyack, 2017). Finally,
there is one more scientometric publication in Table 1 and
Fig. 4E. This publication (Ruiz-Castillo & Waltman, 2015) is
one of the first studies presenting a scientometric application
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of classification systems of scientific publications constructed
using a modularity-based approach. The publication was also
cited by our source publication.

The citation counts reported in Table 1 show that some
publications, especially the more recent ones, have a high
intermediacy even though they have been cited only a very
limited number of times. This makes clear that a ranking
of publications based on intermediacy is quite different from
a citation-based ranking of publications. The publications
in Table 1 that have a high intermediacy and a small number
of citations do have a substantial number of references.

Case 2: Peer review. We now turn to case 2, in which we
analyze the literature on peer review. The analysis is based on
data from the Web of Science database. We make use of the
same data that was also used in a recent paper by Batagelj et
al. (22).

We started with a citation network of 45965 publications
dealing with peer review. This is the citation network that
was labeled CiteAcy by Batagelj et al. (22). We selected
Cole and Cole (1967) and Garcia et al. (2015) as our target
and source publications. The main path analysis carried
out by Batagelj et al. (22) suggests that these are central
publications in the literature on peer review. For the purpose
of our analysis, only publications located on a citation path
between our source and target publications are of relevance.
Other publications play no role in the analysis. We therefore
restricted the analysis to the n = 615 publications located on a
citation path from Garcia et al. (2015) to Cole and Cole (1967).
These publications are connected by m = 3420 citation links,
resulting in an average of k = 2m/n ~ 11.12 citation links per
publication.

As can be seen in Fig. 5A, percolation theory suggests a
value of 1/k ~ 1/11.12 ~ 0.09 for the parameter p. This is
close to the value of 0.11 obtained in case 1. However, the
probability of the existence of an active path between the
source and target publications equals 0.03, which is much
lower than the probability of 0.40 in case 1. Intermediacy
scores tend to be higher in case 2 than in case 1. This can
be seen by comparing Fig. 5B to Fig. 4B. We note that the
former figure has a linear horizontal axis, while the horizontal
axis in the latter figure is logarithmic. The Spearman and
Pearson correlations are somewhat higher in case 2 (Fig. 5C
and Fig. 5D) than in case 1 (Fig. 4C and Fig. 4D).

Table 2 lists the ten publications with the highest interme-
diacy, where we use a value of 0.1 for the parameter p, like
in Table 1. Fig. 5E shows the citation network of the ten most
intermediate publications. There are numerous paths in this
citation network going from our source publication (Garcia et
al., 2015) to our target publication (Cole & Cole, 1967). We
regard these paths as the core paths between the source and
target publications.

The core paths shown in Fig. 5E can be compared to
the results obtained by Batagelj et al. (22) using main path
analysis. Different variants of main path analysis were used
by Batagelj et al. (22). Both using the original version of
main path analysis (9) and using a more recent variant (12),
the paths that were identified were rather lengthy, as can be
seen in Figs. 9 and 10 in Batagelj et al. (22). The shortest
main paths included about 20 publications. This confirms the
fundamental difference between intermediacy and main path
analysis. Main path analysis tends to favor longer paths over
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shorter ones, whereas intermediacy has the opposite tendency.

Using the results presented in Table 2 and Fig. 5E, experts
on the topic of peer review could discuss the historical develop-
ment of the literature on this topic. Since our own expertise on
the topic of peer review is limited, we refrain from providing
an interpretation of the results.

Discussion

Citation networks provide valuable information for tracing
the historical development of scientific knowledge. For this
purpose, citation networks are usually analyzed using main
path analysis (9). However, the idea of a main path is relatively
poorly understood. The algorithmic definition of a main path
is clear, but the underlying conceptual motivation remains
somewhat obscure. As we have shown in this paper, main path
analysis has the tendency to favor longer paths over shorter
ones. We consider this to be a counterintuitive property that

Fig. 5. Results for case 2. (A) Probability of the
existence of an active source-target path as a func-
tion of the parameter p and (B) cumulative distri-
bution of intermediacy scores for different values of
p. Spearman (C) and Pearson (D) correlations be-
tween intermediacy scores for different values of p,
citation counts, and reference counts. (E) Citation
network of the top ten most intermediate publications
for p = 0.1. (Only the name of the first author is
shown.)

lacks a convincing justification.

Intermediacy, introduced in this paper, offers an alternative
to main path analysis. It provides a principled approach for
identifying publications that appear to play a major role in
the historical development from an older to a more recent
publication. The older publication and the more recent one
are referred to as the target and the source, respectively. Pub-
lications with a high intermediacy are important in connecting
the source and the target publication in a citation network.
As we have shown, intermediacy has two intuitively desirable
properties, referred to as path addition and path contraction.
Because of the path contraction property, intermediacy tends
to favor shorter paths over longer ones. This is a fundamental
difference with main path analysis. Intermediacy also has a
free parameter that can be used to fine-tune its behavior. This
parameter enables interpolation between two extremes. In
one extreme, intermediacy identifies publications located on a

Table 2. Top ten most intermediate publications in case 2 for p = 0.1.

P
0.1 0.3 0.5 0.7 0.9 cit. ref.
t Cole & Cole (1967), Scientific output and recognition: A study in the operation of the ~ 0.048 0.841 0.995 1.000 1.000 14 0
reward system in science, Am. Sociol. Rev. 32(3), 377-390.
s Garcia et al. (2015), The author-editor game, Scientometrics 104(1), 361-380. 0.048 0.841 0.995 1.000 1.000 0 8
1 Lee et al. (2013), Bias in peer review, J. Assoc. Inf. Sci. Tec. 64(1), 2-17. 0.018 0.510 0.865 0.986 1.000 5 71
2  Zuckerman & Merton (1971), Patterns of evaluation in science: Institutionalisation, struc- 0.016  0.336  0.622 0.847 0.981 73 2
ture and functions of the referee system, Minerva 9(1), 66-100.
3  Campanario (1998), Peer review for journals as it stands today: Part 1, Sci. Commun.  0.013  0.592 0.967 0.999 1.000 23 35
19(3), 181-211.
4 Crane (1967), The gatekeepers of science: Some factors affecting the selection of arti-  0.009 0.270 0.498 0.700 0.900 34 1
cles for scientific journals, Am. Sociol. 2(4), 195-201.
5  Campanario (1998), Peer review for journals as it stands today: Part 2, Sci. Commun.  0.009 0.517 0.952 0.999 1.000 15 30
19(4), 277-306.
6  Gottfredson (1978), Evaluating psychological research reports: Dimensions, reliabilityy, ~0.008 0.320 0.622 0.847  0.981 26 2
and correlates of quality judgments, Am. Psychol. 33(10), 920-934.
7  Bornmann (2011), Scientific peer review, Annu. Rev. Inform. Sci. 45(1), 197-245. 0.008 0.333 0.776 0.975 1.000 6 71
8  Bornmann (2012), The Hawthorne effect in journal peer review, Scientometrics 91(3), 0.007 0.259 0.500 0.700 0.900 1 20
857-862.
9  Bornmann (2014), Do we still need peer review? An argument for change, J. Assoc. Inf.  0.007 0.275 0.500 0.700  0.900 1 17
Sci. Tec. 65(1), 209-213.
10  Merton (1968), The Matthew effect in science, Science 159(3810), 56-63. 0.005 0.243 0.497 0.701 0.901 29 1
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shortest path between the source and the target publication.
In the other extreme, it identifies publications located on the
largest number of edge independent source-target paths.

We have also examined intermediacy in two case studies.
In the first case study, intermediacy was used to trace his-
torical developments at the interface between the community
detection and the scientometric literature. This case study has
shown that intermediacy yields results that appear sensible
from the point of view of a domain expert. The second case
study, in which intermediacy was applied to the literature
on peer review, has provided an empirical illustration of the
differences between intermediacy and main path analysis.

There are various directions for further research. First of all,
a more extensive mathematical analysis of intermediacy can
be carried out, possibly resulting in an axiomatic foundation
for intermediacy. Intermediacy can also be generalized to
weighted graphs. In a citation network, a citation link may for
instance be weighed inversely proportional to the total number
of incoming or outgoing citation links of a publication. Another
way to generalize intermediacy is to allow for multiple sources
and targets. The ideas underlying intermediacy may also be
used to develop other types of indicators for graphs, such as
an indicator of the connectedness of two nodes in a graph. In
empirical analyses, intermediacy can be applied not only in
citation networks of scientific publications, but for instance
also in patent citation networks or in completely different types
of networks, such as human mobility and migration networks,
world trade networks, transportation networks, and passing
networks in sports.

Materials and Methods

Proofs. Below we provide the proofs of the theorems presented in
the main text. We first need to introduce some additional notation.
We use Pr(Xyy) as a shorthand for Pr(Xu, = 1). To make explicit
that this probability depends on a graph G, we write Pr(Xy. | G).
Furthermore, we use A, to indicate whether an edge e is active.
Hence, Ae = 1 if edge e is active and A, = 0 if edge e is not active.

Proof of Theorem 1 . Let m = |E| denote the number of edges in
the graph G. Suppose that the m edges are split into two sets, one
set of M edges and another set of m — M edges. The probability
that the edges in the former set are all active while the edges in the
latter set are all inactive equals

Py =pM (1 —pmM. (2]

Consider a node v € V. The shortest source-target path that goes
through node v has a length of ¢,,. This means that at least ¢,
edges need to be active in order to obtain an active source-target
path that goes through node v. Hence, the probability that there
is an active source-target path that goes through node v can be
written as

by = zm: Nyi Py, (3]
i=t

where n,; > 0foralli = £,,...,m. Note that this probability equals
the intermediacy of node v. Now consider two nodes u,v € V with
ly < £y. In the limit as p tends to 0, ¢, and ¢, both tend to 0.
However, they do so at different rates. More specifically, in the limit
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as p tends to 0, we have

m
i=l, Ny P

lim = lim —7—"—— 4
p—0 du/du p—0 Z;iéu Ny 5 3
Z:le nyi P;/ Pe,
= lim —=f———
p—0 Zi:@u nuiPi/PZu
 2itg, e (- p)
= lim =7 - -
) ST

= O/nufu
=0.

Hence, in the limit as p tends to 0, ¢y, > ¢y . O

Ly —1

Proof of Theorem 2 . Let m = |E| denote the number of edges
in the graph G, and let ¢ denote the probability that an edge is
inactive, that is, ¢ = 1 — p. Suppose that the m edges are split into
two sets, one set of M edges and another set of m — M edges. The
probability that the edges in the former set are all inactive while
the edges in the latter set are all active equals

Qu =" (1—qm M. (5]

Consider a node v € V. There are o, edge independent source-
target paths that go through node v. This means that at least
oy edges need to be inactive in order for there to be no active
source-target path that goes through node v. Hence, the probability
that there is no active source-target path that goes through node v

can be written as
m
P, = Z nviQi: [6]
1=0y

where n,; > 0 for all i = 0y,..., m. Note that the intermediacy of
node v equals 1 minus this probability, that is, ¢, = 1 — ®,. Now
consider two nodes u,v € V with o, > 0,. In the limit as p tends
to 1, ®,, and ¥, both tend to 0. However, they do so at different
rates. More specifically, in the limit as p tends to 1, we have

lim @, /®, = li Dicg, M 7]
1m = lm —
p—1 “ v p—1 ZZ’;UU nviQi
i Z;’;Uu nuiQi/Qa‘,,
= lim

p=1 Y0 nuiQi/ Qo

B
= lm - N

p=1 Y nuigi T (1 g)Tv

=0/nvo,
=0.

Hence, in the limit as p tends to 1, &, < $,, which implies that
¢'U/ > (z)’l)’ D

Proof of Theorem 3 . Suppose that node w is located on a path
from source s to node u. Let H denote the graph obtained after the
path from node u to node v has been added, and let E,, denote the
set of newly added edges. The intermediacy of node w in graph G
can be factorized as ¢ (G) = Pr(Xsw | G) Pr(Xwt | G). Similarly,
for graph H, we have ¢, (H) = Pr(Xsw | H) Pr(Xwt | H). Clearly,
Pr(Xsw | G) = Pr(Xsw | H), since the paths from node s to node
w are identical in graphs G and H. Furthermore, Pr(X.: | G) =
Pr(Xwt | H and Ve € Eyy: Ae = 0). Since Pr(Xw¢ | H and Ve €
Euv : Ae = 0) < Pr(Xwt | H), it follows that Pr(Xw: | G) <
Pr(Xw¢ | H). This means that ¢ (G) < ¢ (H).

An analogous proof can be given if node w is located on a path
from node v to target t. O

Proof of Theorem J . Suppose that node w is located on a path
from source s to node u. Let H denote the graph obtained after
paths from node u to node v have been contracted, and let E.,
denote the set of all edges between nodes in Vy,,,. The intermediacy
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of node w in graph G can be factorized as ¢w(G) = Pr(Xsw |
G)Pr(Xwt | G). Similarly, for graph H, we have ¢ (H) = Pr(Xsw |
H)Pr(Xwt | H). Clearly, Pr(Xsw | G) = Pr(Xsw | H), since the
paths from node s to node w are identical in graphs G and H.
Furthermore, because nodes in V., except for nodes u and v, do
not have neighbors outside Vi, we have Pr(Xw¢ | H) = Pr(Xuw: |
G and Ve € Eyy:Ae = 1). Since Pr(Xy: | G and Ve € Eyy: Ae =
1) > Pr(Xwt | G), it follows that Pr(Xw¢ | H) > Pr(Xw: | G). This
means that ¢ (H) > ¢ (G).

An analogous proof can be given if node w is located on a path
from node v to target t. O

Algorithms. Intermediacy depends on the probability that there
exists a path between two nodes in a graph. Determining this
probability is known as the problem of network reliability. This
problem is NP-hard (25). Below we provide an outline of an exact
algorithm for calculating intermediacy. Because of its exponential
runtime, the exact algorithm can be used only in relatively small
graphs. We therefore also propose a Monte Carlo algorithm that
approximates intermediacy.

Exact algorithm. The exact algorithm, illustrated in Fig. 6A, is based
on contraction and deletion of edges (26). Suppose we have a graph
G = (V, E). The probability that there exists a path between two
nodes u,v € V can be written as

Pr(Xuw | G) = pPr(Xuy | G/e) + (1 — p) Pr(Xuw | G —€), [8]

where /e denotes the contraction of an edge e € E and G — e
denotes the deletion of an edge e € E. Edge contraction must
respect reachability (27). Eq. 8 yields a recursive algorithm for
calculating Pr(Xy.). For a node v € V, this algorithm can be used
to calculate Pr(Xsy) and Pr(Xy:). The intermediacy ¢, of node
v is then given by Eq. 1. We are usually interested in calculating
the intermediacy of all nodes in a graph G, not just of one specific
node. This can be performed efficiently by calculating Pr(Xs,) and
Pr(Xy¢) for all nodes v € V in a single recursion.

The runtime of the exact algorithm is exponential in the number
of edges m. The algorithm has a complexity of O(2™). In the
special case of a so-called series-parallel graph, the runtime of the
algorithm can be reduced from exponential to polynomial (28).

Monte Carlo algorithm. The Monte Carlo algorithm, illustrated
in Fig. 6B, is quite straightforward. Suppose we have a graph
G = (V, E) and we are interested in the intermediacy ¢, of a node
v € V. A subgraph H can be obtained by sampling the edges in
the graph G, where each edge e € E is sampled with probability p.
Given a subgraph H, it can be determined whether in this subgraph
node v is located on a path from source s to target t. We sample
N subgraphs Hiy, .. HN ‘We then approximate the intermediacy
of node v by ¢, = ~ Z Is¢(v | H;), where Is¢(v | H;) equals 1
if there exists a path from source s to target t going through node
v in graph H; and 0 otherwise.
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Fig. 6. lllustration of the calculation of intermediacy us-
ing the exact algorithm (A) and using the Monte Carlo

intermediacy ¢ algorithm for p = 0.7 (B).

The Monte Carlo algorithm can be implemented efficiently by
simultaneously sampling subgraphs and checking path existence. To
do so, we perform a probabilistic depth first search. We maintain
a stack of nodes that still need to be visited. We start by pushing
source s to the stack. We then keep popping nodes from the stack
until the stack is empty. When a node v has been popped from the
stack, we determine for each of its outgoing edges whether the edge
is active. An edge is active with probability p. If an edge (v,u) is
active and if node u is not yet on the stack, then node wu is pushed
to the stack. At some point, target ¢ may be reached, resulting in
the identification of nodes that are located on a path from source s
to target ¢t. This implementation of the Monte Carlo algorithm is
especially fast for smaller values of the probability p. The runtime
of the Monte Carlo algorithm is linear in the number of edges m.

Source code. In this paper, we use a Java implementation of the
Monte Carlo algorithm. The source code is available at https:/github.
com/lovre/intermediacy (29).
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