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Social life clusters into many kinds of groups, 
a prime topic in the social sciences. Groups 
often coalesce around common activities, or 
more generally around social foci (Feld 1981; 
Kossinets and Watts 2009). Exchanges of 
information and resources are more frequent 
within than between groups, which tend to be 
connected by relatively weaker ties (Granovet-
ter 1973). Some groups may have conflicting 
relations between them. Conflicts can also 
exist within groups, but if conflict escalates, 
groups typically split into opposing factions. In 
a given population, when neither groups nor 
group memberships are known beforehand, 
both can be inferred from social network data. 
Today, to detect groups or communities in net-
works, researchers typically use modularity 
optimization (Fortunato 2010; Reichardt 

2009), a method that builds on block modeling 
(White, Boorman, and Breiger 1976).

Network analysts typically assume ties are 
positive, even though they know not all social 
relations are positive. Science, for instance, is 
characterized by cooperation and benign dis-
agreement, but also by epistemic rivalry. 
In democratic politics, disagreement with 
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Abstract
Social life coalesces into communities through cooperation and conflict. As a case in point, 
Shwed and Bearman (2010) studied consensus and contention in scientific communities. 
They used a sophisticated modularity method to detect communities on the basis of scientific 
citations, which they then interpreted as directed positive network ties. They assumed that 
a lack of citations implies disagreement. Some scientific citations, however, are contentious 
and should therefore be represented by negative ties, like conflicting relations in general. 
After expanding the modularity method to incorporate negative ties, we show that a small 
proportion of negative ties, commonly present in science, is sufficient to significantly alter 
the community structure. In addition, our research suggests that without distinguishing 
negative ties, scientific communities actually represent specialized subfields, not contentious 
groups. Finally, we cast doubt on the assumption that lack of cites would signal disagreement. 
To show the general importance of discerning negative ties for understanding conflict and its 
impact on communities, we also analyze a public debate.
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opponents is endemic as it is vital to political 
identity and to attract voters. Other cases in 
point include military alliances and conflicts, 
and economic collaboration and competition. 
In social fields in general, actors are embed-
ded in a variety of cooperative and conflicting 
relationships (Elias 1978; Simmel 1986) that 
originate from or lead to (possibly overlap-
ping) groups. Incorporating contention is thus 
a major challenge for the detection of groups 
through network data.

In the December 2010 American Socio-
logical Review, Shwed and Bearman used the 
modularity approach to study consensus for-
mation in scientific communities. They 
claimed their approach enables them to dis-
tinguish consensus and benign criticism from 
epistemic rivalry (Shwed and Bearman 
2010:818). Their data were scientific journal 
citations, which they interpreted for their 
modularity analysis as positive ties. On the 
basis of these citation data, they determined 
scientific communities and their salience, that 
is, the extent to which communities stood out 
from a random network. However, once we take 
into account not only the topology of ties but 
also an important aspect of their content—
agreement versus contention—community 
detection yields different outcomes. This is 
important because mechanisms of network 
formation and social outcomes in signed net-
works (with both positive and negative ties) 
are different as well.

We discuss three important assumptions 
that Shwed and Bearman made to get their 
results. Their first assumption is that in normal 
science (Kuhn 1970), most citations signal 
agreement (Shwed and Bearman 2010:820). 
We agree with this assumption (see also Han-
ney et al. 2005) and found additional support 
for it in the literature (Case and Higgins 2000; 
White 2004). Their second assumption is that 
the comparatively few citations that represent 
disagreement have no ramifications for the 
communities detected (Shwed and Bearman 
2010:820). We demonstrate, in contrast, that a 
small proportion of negative citations can sub-
stantially alter the results. Their third assump-
tion is that epistemic rivalries between 

communities are marked by a lack of cross-
community citations (Shwed and Bearman 
2010:821). In other words, contending fac-
tions largely ignore each other. They infer 
from this assumption that if the salience of 
communities diminishes, consensus increases 
(Shwed and Bearman 2010:818, 821, 822). 
However, a lack of citations between groups 
does not necessarily imply opposing views. 
We argue there are strong reasons to believe 
that groups detected in scientific citation net-
works are thematic communities, that is, 
groups of scholars specializing in and writing 
about the same themes or topics. These groups 
are less likely to be positional communities of 
scholars who agree with community members 
and disagree with other communities’ views. 
This is a consequence of scholars mostly cit-
ing articles they consider relevant, regardless 
of their agreement or disagreement with those 
articles.

In the following, we first provide a general 
discussion on modularity, which is a quality 
measure used to compare different partitions of 
a network into groups. Along with pointing out 
a serious technical flaw made by Shwed and 
Bearman, our main claim is that it is not pos-
sible to analyze contention and consensus 
within or between communities when treating 
all ties as positive (Shwed and Bearman 
2010:817). We offer an alternative approach 
that takes both positive and negative ties into 
account. Our approach is very general and can 
be applied to all networks, social and others, 
and is not specialized for scientific networks. 
Second, we analyze patterns of scientific cita-
tions on smoking is cancerous and solar radia-
tion is cancerous, the latter is the same data 
used by Shwed and Bearman. As a baseline, 
we treat all ties as positive and test whether 
salient community differences arise when a 
small, randomly chosen portion of ties is coded 
as negative. Third, we study the evolution of 
the smoking is cancerous field over time by 
combining a new longitudinal approach to 
community detection with automated content 
analysis of abstracts of pertinent articles. 
Fourth, to illustrate that our approach is gen-
eral, we analyze a dataset on a political public 
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debate wherein we distinguished positive and 
negative ties during data coding. For these data 
we show that the community structure obtained 
when—falsely—assuming all ties are positive 
is radically different from the community 
structure obtained when we distinguish 
between positive and negative ties. We con-
clude by arguing that, in general, researchers 
have to explicate negative relations (e.g., criti-
cism, repel, competition, or violence) when 
analyzing fields where conflict is a mechanism 
of group formation. Only then can communi-
ties be validly detected.

Modularity And 
Community Detection
The basic idea of modularity is that one com-
pares an actual network to a network with the 
same distribution of ties over the nodes (i.e., 
degree distribution) but that is otherwise ran-
dom (Newman and Girvan 2004). For positive 
ties, groups (or communities) should have 
higher densities than would be expected on the 
basis of random chance, and they should be 
separated by cleavages that are sparser than in 
the randomized network. When tie strength is 
taken into account, strongly connected nodes 
are more likely to be in the same group than are 
weakly connected nodes, in line with 
Granovetter’s (1973) well-known argument. 
Out of multiple possible assignments of nodes 
to groups that fulfill these requirements, the one 
with the maximal difference between actual and 
expected densities—maximal modularity—is 
arguably the best. In larger networks where the 
number of groups is not known at the start (such 
as the networks we study) there are in fact so 
many different assignments that comparing all 
of them is not feasible. Numerous algorithms 
exist that search heuristically for a good solution 
in ways that are efficient and effective (for an 
overview, see Fortunato 2010). Because most of 
these algorithms randomly reassign nodes to 
other groups in their search for modularity 
improvement, researchers might find a slightly 
different assignment after each run of commu-
nity detection. Salient communities are robust, 
but the less salient communities are, and the 

more the network resembles a random network, 
the less stable the assignment will be. This is not 
simply a limitation of the software: for non-
salient communities with overlaps, different 
assignments can have (almost) the same maxi-
mal modularity value. To detect group overlaps 
and smaller subgroups initially overlooked, a 
parameter (of the spinglass model) can be fine-
tuned to overcome some of the resolution limit 
inherent to this method, although several chal-
lenges remain (Fortunato 2010; Kumpula et al. 
2007; Traag, Van Dooren, and Nesterov 2011). 
This is modularity optimization in a nutshell.

To assess Shwed and Bearman’s applica-
tion of modularity, it is important to stress at 
the outset that modularity scores are by defi-
nition normalized and maximally equal one. 
This is done by dividing the summed differences, 
of actual minus expected intra-community 
ties, by the total number of ties in a network. 
Shwed and Bearman normalized their modu-
larity scores once more, however, by dividing 
the—already normalized—modularity of a 
given network by the logarithm of the net-
work size (see their online supplement [http://
asr.sagepub.com/content/ 75/6.toc]). They did 
not infer renormalization within the theoreti-
cal framework on which modularity is built, 
but inferred it on the basis of an arbitrary 
comparison with a simulated network. Note 
that none of the 457 expert papers reviewed 
by Fortunato (2010) renormalized modular-
ity. Before Shwed and Bearman did so, most 
of their observation period saw modularity 
increases when the size of the corpus of sci-
entific papers increased (left-hand side of 
Figure S2 in their online supplement). This 
finding could have been sociologically mean-
ingful in itself, namely as a sign of increasing 
specialization. By their renormalization, how-
ever, their finding was turned into its oppo-
site, namely stable or slightly decreasing 
modularity, which they interpreted as a sign 
of increasing consensus.

Furthermore, random graphs can some-
times exhibit surprisingly high modularity 
scores due to random fluctuations of ties 
(Reichardt and Bornholdt 2007), contrary to 
Shwed and Bearman’s (2010:823) claim that 
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modularity would equal zero in a random net-
work. This makes it difficult to compare mod-
ularity scores across different networks. To 
establish significance, one would have to gen-
erate large numbers of simulated random net-
works with the same degree distribution, and 
then compare them with a large number of 
community detection runs on the empirical 
network. This does not imply that the modular-
ity approach is flawed, and in fact it has been 
validated in many test cases (Fortunato 2010), 
but when interpreting modularity results, one 
should take these considerations into account.

Although Shwed and Bearman’s study is 
longitudinal, the authors did not consider how 
groups changed over time, only the overall 
modularity score. Recently, Mucha and col-
leagues (2010) crafted an effective method, 
termed multi-slice modularity, where each 
slice represents a network for a single year. 
An advantage over earlier approaches is that 
its longitudinal modularity depends not only 
on individual slices, like standard modularity, 
but also on communities’ temporal stability. 
By using multi-slice modularity we muster 
additional analytic power for our approach.

To detect communities in signed graphs, 
negative ties should lie mostly between com-
munities rather than within them, opposite to 
positive ties. Although cooperation, such as 
exchange, binds together people who may 
then be assigned to the same community if 
they are connected by more (or stronger) 
positive ties than would be expected by ran-
dom chance, conflict pushes them apart. Con-
sequently, if two or more people have more 
(or stronger) conflicting relationships with 
each other than would be expected by random 
chance, they should not be assigned to the 
same community. Combining these two argu-
ments in modularity maximization, densities 
of within-group positive ties should be maxi-
mized, just as above, and negative within-
group ties should be minimized (Traag and 
Bruggeman 2009). This conception general-
izes social balance theory (Harary 1953; Was-
serman and Faust 1994) by loosening its rigid 
community assignment, in which negative ties 
were not allowed to exist within communities.

The algorithm we use to detect groups 
with positive and negative ties is based on the 
Louvain method (Blondel et al. 2008), which 
performs well in test settings and is available 
online.1 An earlier application of this algo-
rithm to scientific citation data appears in 
Wallas, Gingras, and Duhon (2009).

Scientific Communities
Let us now scrutinize Shwed and Bearman’s 
assumption that the comparatively few cita-
tions that represent disagreement have no 
substantial impact on the communities 
detected (p. 820). Although it is certainly true 
that some scientific citations are critical, per-
haps the proportion of negative references is 
so low that it is safe to assume the compara-
tively few citations representing disagreement 
have no impact on the communities found?

To see if this is the case we examine two 
cases: solar radiation is cancerous and smok-
ing is cancerous datasets. We received solar 
radiation is cancerous data from Shwed, so 
these citations are exactly the same as those 
used in their article. We collected the smoking 
is cancerous dataset from the ISI Web of Sci-
ence using the same procedure Shwed and 
Bearman followed. For the latter data we also 
have most of the articles’ abstracts, allowing 
us to analyze, to some extent, the scientific 
content of the communities, which we cannot 
do for Shwed and Bearman’s data.

To distinguish negative from positive refer-
ences, we would have to acquaint ourselves 
with the vernacular of cancer researchers and 
read thousands of articles, which is beyond 
our capability here. To test the impact of nega-
tive ties, we therefore set up the following 
procedure. We took a random sample of ties in 
the corpus, turned them into negative ties, and 
performed community detection on that net-
work. We repeated this procedure a hundred 
times for each year, and each time we meas-
ured the difference between the negatively 
spiced assignment of nodes into communities 
and the original assignment; we did this for 5 
and 10 percent of negative ties, respectively. 
Such small percentages of negative ties are 
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normally present in science (Case and Higgins 
2000; Hanney et al. 2005; White 2004). To 
quantify the similarity of the assignments, we 
used the measure of Normalized Mutual Infor-
mation (NMI) (Lancichinetti and Fortunato 
2009). The NMI measure indicates, given one 
assignment, how much can be inferred about 
the other assignment. If one assignment com-
pletely predicts the other, the NMI score 
equals one; if nothing can be inferred, it 
equals zero. To make sure observed differ-
ences do not arise because of the algorithm’s 
heuristic nature, which may lead to somewhat 
different outcomes in subsequent runs, we 
performed the same comparison but without 
changing any of the ties to negative.

Figure 1 displays the results; vertical bars 
indicate 95 percent confidence intervals and 
mean over 100 runs of the NMI score, and the 
comparison treatment with only positive ties 
is called independent. The figure shows that 
even a low proportion of negative ties can 
cause assignments to differ more strongly 
than when all ties are positive. This is the case 
for smoking is cancerous data (Figure 1a) and 
solar radiation is cancerous data (Figure 1b). 
Of course, these differences become larger 
and more salient when the percentage of 
negative ties increases. Our findings suggest 
Shwed and Bearman’s assumption that the 
comparatively few citations representing dis-
agreement have no impact on the communi-
ties detected (p. 820) is incorrect. Figure 1 
shows that negative ties do have an impact 
and cannot be ignored if one wants to study 
contention.

One might expect that, in actuality, nega-
tive ties would lead to even more salient dif-
ferences. The reason is that by sampling a 
certain percentage of ties randomly, we 
ignored any pattern in the negative ties, 
although we know from social balance theory 
(Wasserman and Faust 1994) and empirical 
studies (Szell, Lambiotte, and Thurner 2010) 
that negative ties tend to be present in-
between specific communities and not ran-
domly throughout a network. Networks with 
a small percentage of negative ties are thus 
likely to have a more salient community 

structure than we find here. During periods of 
epistemic rivalry, when the percentage of 
negative ties is higher, the difference will usu-
ally be larger. As mentioned earlier, the actual 
pattern of negative ties is unknown to us and 
remains an empirical question. Nonetheless, 
our analysis shows that researchers are likely 
to detect a different community structure 
when negative ties are explicated.

Dissensus Or 
Specialization?
We now focus on Shwed and Bearman’s 
assumption that epistemic rivalry, that is, a 
lack of consensus, is characterized by a lack 
of cross-community citations (p. 818). Does 
this imply that if one finds a lack of cross-
community citations, one could infer conten-
tion? Shwed and Bearman suggest this is so, 
saying that “when different communities are 
salient to the global structure, the field is con-
tentious” (p. 822). But this inference is logi-
cally unsound; a lack of cross-community 
citations could also mean scholars within 
communities specialize in their proper sub-
fields rather than they disagree with scholars 
in other subfields. Interestingly, Shwed and 
Bearman also speak about changes of modu-
larity and consensus. Accordingly, an alterna-
tive reading of their assumption seems to be 
that over time, “consensus formation exhibits 
a decline in community salience” (p. 822). 
Again, it does not follow that if community 
salience declines, consensus increases, as 
Shwed and Bearman say when they discuss 
their findings: “We view such a significant 
decline [of modularity] over several years as 
consensus formation” (p. 830). Although nei-
ther decreasing nor increasing modularity in 
itself indicates consensus formation, looking 
at it over time is a potentially useful idea.

To examine what modularity over time 
could mean with respect to a scientific field, 
we used the smoking is cancerous dataset that 
contains abstracts and citations. We first 
extracted all words used in all abstracts of the 
corpus. We assumed that a group of articles 
that uses a shared vocabulary distinct from 
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other groups discusses similar topics or meth-
ods. The common technique for extracting 
terms specific to a set of documents is the 
term frequency-inverse document frequency 
(tf-idf ). The underlying principle is that for a 
certain term to be of specific interest or sali-
ence in a document, it should be frequently 
mentioned in that specific document and not 
mentioned much elsewhere (Salton and 
McGill 1983). For the groups here (that we 
first detected through modularity of citation 
patterns), if terms are common in a specific 
group and rare elsewhere, this indicates that 
articles in that group concern similar themes 
or topics. At the group level, we focus on the 
five most salient terms according to this tf-idf 
measure. Moreover, by using the multi-slice 
modularity method (Mucha et al. 2010), we 
obtained a dynamic view of the evolution of 
the groups, displayed in Figure 2, together 
with the five most salient terms for each 
group. This graphical representation of group 
dynamics as an alluvial diagram was invented 
by Rosvall and Bergstrom (2010). To avoid a 
cluttered image, we show only the 12 largest 
groups, which over the period of observation 
had at least 1,000 articles. Within a group, it 
is possible that scholars criticize each other, 
but we cannot detect contention because we 
do not know which citations are negative. We 
can, however, analyze how community struc-
ture changes over time with respect to com-
mon themes or topics.

Our approach makes it possible to provide 
a more substantive description of the evolu-
tion of the community structure. Figure 2 
provides evidence that the field self-organizes 
into thematic groups in a process of ongoing 
scientific specialization, net of possible dis-
agreements within these groups. This is a 
consequence of scientists citing articles that 
they consider relevant, regardless of possible 
disagreements. It seems less likely that the 
groups detected are positional, that is, con-
sisting of scholars who mutually agree while 
disagreeing with other groups’ views. During 
most of the observation period, modularity 
stayed more or less the same (see Figure 2). 

Shwed and Bearman renormalized their modu-
larity scores and found stable or decreasing 
modularity, which they took for increasing 
consensus. As we point out, without arbitrarily 
renormalizing modularity, it first increases but 
then remains relatively stable. Without infor-
mation about negative ties, not much can be 
said with any certainty about consensus or dis-
sensus. It is possible that within thematic com-
munities there is disagreement such that, once 
negative ties are explicated, they turn out to be 
further partitioned into positional communi-
ties. In that case, single colored bands in Fig-
ure 2 would split into multiple colored bands 
(see the article online for figures in color).

A Public Debate
We now look at data that assess how large the 
difference between community assignments 
can be when ignoring the distinction between 
positive and negative ties. Because our 
method is very general and applicable to any 
network, we use data for which we know 
which ties are negative and are not scientific 
citations. Our dataset contains references 
between opinion makers in the debate over 
minority integration in the Netherlands. We 
focus on longer articles published in two 
broadsheet newspapers (NRC Handelsblad 
and De Volkskrant) between the assassination 
of the populist politician Pim Fortuyn (May 6, 
2002) and the assassination of filmmaker 
Theo van Gogh (November 2, 2004). We 
selected articles from the Lexis-Nexis data-
base through the key word integration in 
conjunction with foreigners, Muslims, or 
minorities. During this turbulent period in 
Dutch political history (Uitermark 2012), the 
newspapers ran 149 long articles (more than 
1,000 words) on integration.

We manually coded references to individu-
als (both Dutch and foreign, dead and alive), 
institutions (e.g., political parties), and think 
tanks. Manual coding is laborious and requires 
some knowledge of the debate under study 
but it is currently the only way to properly 
distinguish the positive, neutral, or negative 
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content of references. Progress in automated 
coding is slower than expected a couple decades 
ago, and high validity coding is currently 
limited to word frequencies (e.g., Michel et al. 
2011). In our 149 articles, we distinguished 
references according to their tone: positive, 
neutral, or negative. As a rule, we assigned 
positive and negative codes only if references 
were unambiguous. Because we coded refer-
ences at the level of paragraphs, it was pos-
sible for one article to contain several 
references to the same actor, with each para-
graph coded by the evaluation implicit or 
explicit in the references.

In total, we coded 1,779 references by 
authors commenting on others; among these 
directed ties, 318 were positive, 930 were 
neutral, and 531 were negative. Here we 
include only positive and negative ties and we 
consider only the largest component of the 
network, which has 323 actors. We defined tie 
weights between two actors by subtracting the 
number of negative references from the num-
ber of positive references. In Figures 3, 4, and 
5, thicker lines denote stronger (either positive 
or negative) references, and gray shadings 
denote communities of referring actors.

First, we identify communities while 
assuming that all references are positive. As a 
result, the network in Figure 3 has a number 
of relatively dense groups of actors referring 
to each other. When we distinguish positive 
and negative ties in Figure 4, consistent with 
the data, we find two large communities, each 
with quite different membership from any of 
the communities in Figure 3. These two large 
communities have many references between 
them, but they are mostly negative. The two 
communities clearly disagree, and commu-
nity membership now corresponds to a large 
extent to ideological identification. The com-
munities are positional rather than thematic, 
and contention is a key mechanism of group 
formation in this field. The large community 
on the left consists mostly of actors who 
argue against stigmatization of Islam and 
other minorities, and the large community on 
the right contains a majority of actors who 
argue that mass migration and (radical) Islam 

present a threat to Western civilization and to 
the Netherlands in particular.

Figure 5 shows the actual disagreement 
within the communities from Figure 3; here, 
we map the positional communities from Fig-
ure 4 onto the result from Figure 3. Gray shad-
ings of the nodes show that disagreement 
dissects the communities initially found. The 
NMI score for Figures 3 and 4 is .34, which is 
relatively low given that many positively con-
nected actors who were together in Figure 3 
stay together in Figure 4. Our key point here is 
that if one assumes all ties to be positive, one 
obtains a very different result than if negative 
ties are explicated. Once both positive and 
negative ties are taken into account, it then 
becomes possible to analyze contention.

Conclusions
In recent decades, network analysts have used 
various approaches and measures to identify 
groups through network data. It has been dif-
ficult, however, to incorporate negative ties 
into analyses. Consequently, conflictual 
aspects of social life often escape from view. 
Shwed and Bearman proposed one way of 
using network data to study consensus and 
dissensus in scientific debates. Their main 
claim was that they can detect contention and 
consensus through scientific citation data by 
using modularity optimization. Their empiri-
cal finding was that consensus increases, 
indicated by decreasing renormalized modu-
larity.

We broadly encourage studying consensus 
and dissensus through network data by using 
modern community detection methods. Nev-
ertheless, we believe that Shwed and Bear-
man’s claims and findings do not stand up to 
scrutiny. Without distinguishing negative ties 
explicitly, little can be said about contention 
within the field under study. Moreover, with-
out renormalization, modularity does not 
decrease but stays more or less the same. If 
anything, the network data combined with 
word frequency analysis suggest that a key 
mechanism of group formation is specializa-
tion into subfields.
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Our several examples showed that distin-
guishing positive and negative ties is essential 
when studying conflict in networks. Incorpo-
rating the signs of ties has a substantial 
impact on the communities detected, even in 
fields where, as is the case for science, inter-
action is highly civilized and the proportion 
of negative references is low. We also showed 
that a community structure can be better 
understood by (1) using multi-slice modular-
ity to map changes in community structure 
over time and (2) combining analysis of net-
work topology with network content. For the 
latter, one can count word frequencies, along 
with incorporating tie signs. We hope this 
comment serves as a guideline for researchers 
interested in using community detection, 
especially in fields where negative ties are 
present. We believe this approach opens up 
exciting new possibilities to analyze group 
formation and change in scientific, political, 
and many other fields.
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Note
1.	 The Louvain algorithm is available at http://launch 

pad.net/Louvain/.
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